Какой газ используется в современных холодильниках

Классификация холодильных агентов

Для успешного выполнения функций хладагент должен удовлетворять набору требований, которые можно разделить на группы:

  • термодинамические (высокие холодопроизводительность, теплопроводность и теплопередача);
  • физико-химические (низкая коррозийная активность и негорючесть);
  • физиологические (безвредность для человека);
  • экономические (низкая стоимость, доступность и распространенность);
  • экологические (озонобезопасность и низкий потенциал глобального потепления).

Практически невозможно найти хладагент, который бы удовлетворял всем требованиям, поэтому при проектировании систем холодоснабжения вещество выбирается под конкретные условия работы холодильного агрегата.

Синтетические хладагенты

Фреоны (хладоны) – техническое название группы химических соединений на основе метана или этана. Эти безвредные для здоровья человека газы не имеют цвета и запаха, плохо растворимы в воде, невзрывоопасны и негорючи, что делает их идеальными хладагентами. Неудивительно, что с изобретением первого фреона в 1928 году началось бурное развитие холодильной промышленности и сферы кондиционирования воздуха. Вещества групп ХФУ (хлорфторуглероды) и ГХФУ (гидрофлорфторуглероды) заняли доминирующее положение в сфере промышленного и коммерческого холода, полностью вытеснив использовавшиеся до них «природные» хладагенты (в том числе аммиак).

Но как выяснилось позже, фреоны, не оказывая прямого вреда здоровью человека, вредят ему косвенно, уничтожая озоновый слой земли и содействуя всемирному потеплению. Ученые, которые выдвинули эту теорию, получили Нобелевскую премию, а опасные фреоны были запрещены Монреальскими протоколам и последующими международными нормами.

На данный момент фреоны классифицируют исходя из степени их экологической безопасности:

  • 1. очень высоким потенциалом истощения озона обладают ХФУ, поэтому фреоны R-11, R-12, которые широко использовались в бытовых холодильниках, запрещены Монреальскими протоколами;
  • 2. ГХФУ вызывают слабое истощение озонового слоя, поэтому Киотскими протоколами их производство и применение было ограничено, а к 2050 году планируется их полный вывод из употребления. Сейчас ведется поиск адекватной замены опасному R-22, который являлся основным хлададгентом в промышленных холодильных установках;
  • 3. Фторуглеводороды и гидрофторуглероды (ГФУ), которые не содержат хлора, имеют короткий срок жизни в атмосфере и не несут опасности озоновому слою. Сейчас эти фреоны (например, R-134а и R-404а) считаются альтернативными заменителями запрещенных фреонов, проигрывая им, однако, качественными характеристиками и существенной дороговизной.

На данный момент насчитывается свыше 50 фреонов и смесей, которые применяются в холодильном оборудовании. Самым распространенным, который позиционируется как основная замена запрещенному R-12, является хладон R-134а: он используется в бытовых и промышленных холодильных системах, а также в системах кондиционирования воздуха.

Это бесцветный газ, который хоть и проигрывает в характеристиках R-12 и выше по цене, но безопасен для здоровья человека и окружающей среды. Однако при его использовании необходима проверка холодильной системы на утечку, т.к. при попадании воздуха могут образовываться горючие смеси.

Природные хладагенты

Такие естественные хладагенты, как аммиак, углеводороды (пропан и бутан), вода и диоксид углерода (СО2), которые до открытия фреонов были основными хладагентами в холодильной технике, после запрета опасных фреонов снова используются в промышленности.

Аммиак

Являясь экологически безопасным хладагентом, аммиак для человеческого здоровья опасен сильно. Также он огнеопасен, при некоторых условиях взрывоопасен, однако имеет высокую удельную холодопроизводительность и часто встречается в природе. Аммиак широко используется при обеспечении холодом предприятий: аммиачные холодильные установки применяются в основных отраслях пищевой промышленности по всему миру, как рабочая жидкость он циркулирует в средних и крупных тепловых насосах, применяется в складах низкотемпературного хранения и для получения ледяной воды. В менее мощных установках аммиак комбинируется с правильно выбранным хладоносителем, используется в каскадных циклах вместе с СО2 в полугерметичных и герметичных компрессорах, в жидкостных охладителях для кондиционирования воздуха.

Углеводороды

Углеводороды, обладая великолепными термодинамическими характеристиками, прекрасно подходят в качестве хладагентов, а схожесть с опасными фреонами R-12 и R-22 обеспечивает легкую переориентацию промышленных холодильных машин на работу с углеводородами. Сейчас бутан успешно применяется в домашних холодильниках и небольших промышленных установках, а пропан широко используется в холодильной промышленности и холодильных транспортных установках. Но высокая горючесть и легковоспламенимость углеводородов обуславливает применение усиленных мер безопасности и разработку особых конструкций теплообменного оборудования. Так размеры пропанового компрессора должны быть больше, чем при использовании в холодильной машине R-22 заданной производительности, а заправленный пропаном тепловой насос рекомендуется размещать в отдельном помещении.

Благодаря высоким термодинамическим свойствам вода является прекрасной рабочей жидкостью для высокотемпературных промышленных тепловых насосов. Она широко используется в открытых и полуоткрытых системах, но из-за низкой теплоемкости для ее использования в герметичных системах необходимо применение особо мощных турбокомпрессоров. Однако в сравнении со среднетемпературной холодильной камерой, которая работает на R-134a, применение воды в холодильных агрегатах продемонстрировало большой потенциал экономии энергии (до 25%). Поэтому сейчас в Европе ведутся работы над прототипами радиальных и осевых компрессоров, которые бы обеспечивали достаточную мощность охлаждения, работающего на воде холодильного оборудования.

Углекислый газ

Углекислый газ широко распространен в природе, очень дешев, нетоксичен, негорюч, безопасен для окружающей среды. В области субкритических температур системы с СО2 превосходят по эффективности оборудование на фреонах, а для работы со сверхкритическими температурами оборудование требует оптимизации. Сейчас все большую популярность приобретают каскадные установки, в нижнем контуре которых циркулирует СО2, а в верхнем – аммиак; такие системы применяются для оборудования холодильных складов, супермаркетов, предприятий пищевой промышленности и других объектов. Также предлагается использовать СО2 в тепловых насосах и бытовых холодильниках.

Какой газ используется в современных холодильниках

Электронная рассылка о холодильниках. Самые интересные подборки новостей.

Информация о холодильниках от

Поиск

Хладагенты бытовых холодильников

06 сентября 2005

Прочитано: 75973 раз

Хладагентом (сокращение от слов «холодильный агент») принято называть рабочее вещество с низкой температурой кипения (испарения), с помощью которого осуществляется охлаждение в абсорбционных и компрессионных холодильных машинах. В абсорбционных бытовых холодильниках в качестве хладагента применяют водоаммиачный раствор. В компрессионных бытовых холодильных приборах (БХП) применяют разные марки хладагентов. В термоэлектрических холодильниках хладагента нет: электрическая энергия преобразуется непосредственно в тепловую, когда электрический ток проходит через полупроводниковые элементы: внутренние участки элементов охлаждаются, а наружные нагреваются.

На хладагенты, являющиеся охлаждающими низкозамерзающими жидкостями, установлены государственные и международные стандарты. Хладагенты должны быть нейтральными к металлам, сплавам и другим материалам, используемым при изготовлении холодильного агрегата. Они не должны быть взрывоопасными и воспламеняющимися в смеси с воздухом и маслами. Они не должны быть ядовитыми, не должны вызывать удушья и раздражения слизистых носа и дыхательных путей человека, не должны отравлять или ухудшать экологическую среду. Хладагенты современных БХП не должны содержать веществ, разрушающих озон или вызывающих парниковый эффект. Они должны быть экологически безопасными, не оказывающими влияния на образование «озоновых дыр» в атмосфере или глобальное потепление климата.

При нормальном атмосферном давлении все хладагенты компрессионных БХП имеют газообразное состояние. Под давлением в герметичных емкостях они сжижаются и сохраняются в жидком состоянии. Фазовое состояние хладагентов в отдельных составных частях герметичных холодильных агрегатов БХП зависит от давления и температуры. При высоком давлении это жидкость, а при низком газ. При сжатии хладагент нагревается, а при расширении (кипении и испарении) охлаждается.

В компрессор БХП должен поступать обязательно газообразный хладагент, чтобы не происходили гидравлические удары и разрушения деталей компрессора. Под давлением компрессора газообразный хладагент сжимается и при этом выделяет тепло. Поэтому трубки на выходе из компрессора при его работе всегда горячие. Из компрессора горячий газ поступает в конденсатор. По мере охлаждения в конденсаторе сжатый газ постепенно превращается в жидкость. На входном участке конденсатора это чистый газ с температурой на десятки оС выше окружающей, на среднем газ с конденсировавшимися каплями жидкости и жидкость с пузырьками газа, а на выходе однородная жидкость с температурой, близкой к окружающей.

При работающем компрессоре нагнетательный трубопровод и входной участок конденсатора должны быть горячими, а участок конденсатора на выходе хладагента немножко теплее окружающего воздуха.

Под действием разрежения, создаваемого во всасывающем трубопроводе компрессора жидкий хладагент из конденсатора поступает в испаритель. При разрежении в испарителе происходит кипение (испарение) жидкого хладагента. При испарении хладагент отбирает тепло от стенок испарителя и охлаждает камеру БХП.

Первые компрессионные холодильники работали на сернистом ангидриде. Этот газ опасен для здоровья человека и имеет неприятный запах. Практически с 50-х и до конца 80-х годов прошлого века во всех компрессионных БХП отечественного и зарубежного производства в качестве хладагента применяли фреон-12, получивший условное международное обозначение R12 (по первой букве английского слова Refrigerant). Для смазки деталей компрессора использовали минеральное масло, растворимое во фреоне («фреоновое масло»). При обычных условиях R12 представляет собой нейтральный газ без цвета и запаха, не представляющий серьезной угрозы для здоровья человека. В холодильнике средних размеров его менее 100 г. и при аварийном нарушении герметичности системы он быстро улетучивается.

Производство фреона-12 было организовано впервые в 1931 г. американской фирмой Frigidaire, которая затем продала свои патенты концерну DU PONT. В начале 90-х DU PONT выпустил на замену R12 новый альтернативный хладагент R134a, не разрушающий озон.

В 80-е годы было открыто разрушающее воздействие атомарного хлора на озон в атмосфере. Озоновый слой в атмосфере служит защитным щитом от космических излучений для всего живого на Земле. Из открытия ученые сделали вывод о глобальной угрозе здоровью людей и окружающей природе из-за истощения озонового слоя в результате промышленной деятельности, в том числе выброса в атмосферу фреонов. В качестве подтверждения глобальной угрозы приводили расширение «озоновых дыр» над полюсами Земли. Принятые международные соглашения призывали все страны к прекращению производства и потребления веществ, разрушающих озон. Монреальский протокол 1987 г. предусматривал постепенный перевод производства БХП во всех странах на озононеразрушающие хладагенты. Поскольку фреон 12 в своем составе содержит хлор, который разрушает озон, он попал в перечень запрещенных хладагентов.

В последующие годы наблюдалось сужение «озоновых дыр», никак не связанное с производством фреонов для холодильников. Мнение других ученых о циклическом характере изменения размеров «озоновых дыр», как глобальных явлений природы, и не возможном влиянии на них тех объемов фреонов, которые производились в 80-е годы, не было принято экологами. Фреон-12 был "осужден" окончательно.

Во исполнение Монреальского протокола взамен единого хладагента R12 в разных странах стали разрабатывать озонобезопасные и экологически чистые хладагенты. По энергетическим характеристикам некоторые из них даже превосходят традиционный R12. В США разработали озонобезопасный хладагент R 134а, который нельзя использовать в холодильных машинах, спроектированных под R12. Новый хладагент должен работать вместе со специальным синтетическим маслом, которое разрушает электроизоляционные материалы электродвигателей компрессоров, спроектированных для работы на R12 с минеральным маслом. Для перевода производства БХП с R12 на R134a необходимы существенные конструктивные изменения компрессоров, электродвигателей и всей системы охлаждения. Большие затраты на переоснащение производства, необходимые для перехода с R12 на R134а, явились главным препятствием внедрению этого хладагента в производство отечественных БХП.

Читайте также  Почему вода в холодильнике

В 90-е годы международные организации по защите климата Земли пришли к выводу о глобальной опасности потепления. В 1997 г. был принят Киотский протокол, направленный на ограничение выбросов в атмосферу «парниковых газов». Этот протокол обязывает страны докладывать в международный комитет по защите климата Земли о выбросах в атмосферу парниковых газов.

Вместо R12 и R134a в Германии в 90-х годах стали применять природный газ изобутан, совместимый с минеральными маслами. Этот хладагент получил условное сокращенное международное обозначение R600a. Он не разрушает озон и не вызывает парниковый эффект, и поэтому получает все большее признание. Около 10 % БХП в мире и более 35 % в Европе (в том числе холодильники «Атлант») в 2005 г. работают на R600a. По теплофизическим и эксплуатационным характеристикам R600a превосходит R134a. Самые экономичные холодильники с классами энергопотребления А+ и А++ работают на R600a. Природные углеводороды, как хладагенты, не находили широкого применения в БХП из-за повышенной пожарной опасности. В современных конструкциях эту проблему решили благодаря уменьшению дозы заправки до таких объемов, которые практически не могут привести к пожару. Доза заправки бытовых холодильников и морозильников столь мала, что даже при полной утечке хладагента из агрегата его концентрация в кухне объемом 20 куб.м будет ниже порога горючести в десятки раз.

В 130-литровом холодильнике всего 20 г R600a, а в начале прошлого века в холодильник такого же объема заправляли 250 г изобутана.

В России взамен R12 используют импортные хладагенты R134a и начинают применять экологически чистые хладагенты отечественной разработки: диметиловый эфир, пропан, бутан, изобутан и их смеси. На российских предприятиях освоено производство R600a. Российские хладагенты на основе смесей газов известны под марками: С-1, С-2, СМ-1, Экохол-3.

Хладагент С-1 представляет собой смесь углеводородов и фторуглеродов (азеотропная смесь R152/R600a). Хладагент СМ-1 представляет собой смесь R134a/R218/R600, по термодинамическим характеристикам близкую к R12. Совместимость С-1 и СМ-1 с минеральным маслом ХФ 12-16 и конструкционными материалами отечественных компрессоров позволяет максимально упростить процесс перехода с R12 на отечественные хладагенты.

Все хладагенты, применяемые в массовых БХП, обладают очень высокой текучестью и не имеют ни цвета, ни запаха. Они способны проникать даже через микротрещины и микропоры обыкновенного чугуна (воздух, вода и керосин не проникают через такой чугун).

Особо высокие требования предъявляют к герметичности холодильных агрегатов, работающих на смесях из низкокипящих газов с разными температурами кипения. При нарушении герметичности системы в первую очередь улетучиваются высококипящие фракции. Самая малая утечка одной из фракций приводит к нарушению соотношения пропорций между ними, к изменению температуры кипения хладагента и нарушению температурного режима работы БХП. При устранении утечек возникают повышенные трудности, поскольку исключается возможность дополнения хладагента или только улетучившейся фракции. Из-за разных температур кипения газов приходится полностью перезаправлять холодильный агрегат.

Марка хладагента для российских покупателей не имеет большого значения при нормальной работе БХП. О ней можно забыть до печального момента, когда возникнет необходимость ремонта. При нарушении герметичности системы охлаждения специалисту нужно знать, какой хладагент заправлен, оптимальную дозу заправки и марку масла. Эти данные указывают на табличке с характеристикой БХП или холодильного агрегата. Марку хладагента и масла должны указывать и на мотор-компрессоре. Технологические инструкции определяют возможности взаимозаменяемости разных марок хладагентов и масел, с которыми они могут работать.

Что такое фреон

Что такое фреон

Холодильник – незаменимый бытовой агрегат, без него невозможно сохранить продукты. Он обеспечивает их охлаждение и поддерживает низкую температуру. Теплоизолированная камера исключает нагревание, при оптимальном режиме не происходит размораживание. Люди постоянно пользуются холодильной техникой, но редко задумываются о принципе ее работы. Многие даже не знают, что такое фреон и для чего он нужен, где находится, как заправляется, почему случаются утечки.

Нагнетание холода обеспечивает хладагент, который циркулирует в системе. В компрессоре его пары сжимаются и попадают в конденсатор. Там происходит охлаждение сжатого газа и переход в жидкое состояние. Затем жидкость подается в специальный испаритель, закипает и начинает испаряться. При этом из окружающего пространства забирается тепло. Именно в этот момент происходит охлаждение. Образовавшиеся пары вновь попадают в компрессор. Цикл повторяется. Так в морозильной и холодильной камерах поддерживается нужная температура. То есть, весь процесс основан на физических и химических свойствах фреона, на его способности испаряться и охлаждать.

Определение фреона

Вообще, фреонами называют довольно большую группу веществ, которые являются производными насыщенных углеводородов и применяются в качестве хладагентов. К ним относят более 40 соединений, содержащих метан и этан, атомы фтора, брома или хлора в разных пропорциях. Для заправки холодильников применяются только безопасные варианты.

Название «фреоны» – чисто техническое, но этот термин закрепился и в быту. Изначально его использовала американская химическая компания DuPont, которая первой стала выпускать вещество для заправки холодильных установок. Долгое время корпорация оставалась монополистом, никто другой не мог производить аналоги фреона. Сейчас так называют все хладагенты.

Для окружающей среды фреон абсолютно инертен. То есть, имеет слабую химическую активность, практически не вступает в реакции и не приносит вреда. В бытовых или промышленных холодильниках он присутствует всегда. При прохождении цикла состояние хладагента меняется, происходит сжатие и конденсация газа, потом кипение и испарение жидкости. На этом этапе идет поглощение тепла и выделение холода.

Важно! Фреоном заправляют не только бытовые холодильники. Он используется для заправки любых охлаждающих агрегатов и огнетушителей, имеется в аэрозолях и распылителях, присутствует в монтажной пене и лакокрасочных материалах.

У бытовых хладагентов отсутствует запах, они бесцветные и полностью прозрачные. Из-за этого неопытный человек вряд ли сразу обнаружит утечку. О том, что есть проблемы с охладительной системой, можно узнать только по косвенным признакам. Например, если на стенках камеры появился конденсат, а сам агрегат стал плохо замораживать или вообще перестал работать.

Заправка фреоном холодильника

Для заправки бытовых холодильных установок используют разные варианты:

  • R600a (изобутан) имеет отличные теплофизические и эксплуатационные характеристики. Отличается высоким холодильным коэффициентом, что снижает энергопотребление и удешевляет заправку. Создает сравнительно небольшое давление в рабочем контуре, тем самым снижает уровень шума, уменьшает нагрузку на трубопровод и практически исключает утечки. Изобутан – природное вещество, безопасное для окружающей среды, не разрушающее озоновый слой и не вызывающее парникового эффекта. Он взрывоопасен, но в компрессоре и в испарителе концентрация газа небольшая, поэтому взорваться он не может.
  • R134a считается лучшим заменителем запрещенного R12. Это – прозрачный бесцветный газ без запаха, который не содержит хлора и других опасных примесей. Безопасен для окружающей среды, не разрушает озоновый слой. Идеально подходит для использования в условиях, где возможен перегрев, высокая влажность и конденсация. Не воспламеняется и остается нетоксичным во всем диапазоне эксплуатационных температур. Молекулы R134a отличаются меньшими размерами, чем у стандартного R12, что повышает вероятность утечек.
  • R12 – самый распространенный в прошлом заправочный хладагент. С 2010 года запрещен к использованию, но в устаревшей технике встречается до сих пор. Имеет сравнительно слабые эксплуатационные свойства, по всем позициям проигрывает современным аналогам. Издает характерный сладковатый запах, при высокой концентрации вызывает удушье. В обычных условиях не возгорается, при сильном нагреве может взорваться.
  • R22 в настоящее время не используется, встречается только в холодильных камерах старого образца. Бесцветный заправочный газ имеет ярко выраженный запах хлороформа. Опасен для озонового слоя, хотя его разрушающий коэффициент ниже, чем у запрещенного R12. При сильном нагревании или взаимодействии с открытым огнем выделяет высокотоксичные вещества.

Чтобы выяснить тип хладагента, достаточно посмотреть ярлык на компрессоре или техническую документацию. В современных моделях холодильников и морозильных камер используются только R600a и R134a. Они отличаются хорошими эксплуатационными качествами, а при утечках не представляют опасности для природы и человека.

Где находится фреон в холодильнике

Где находится фреон в холодильнике

Жидкий хладагент циркулирует по системе трубопроводов испарителя камеры. Именно там находится значительная часть фреона. Его циркуляцию по магистрали обеспечивает компрессор.

Поглощая из окружающего пространства тепло и выделяя холод, фреон быстро охлаждает воздух. Этот процесс сопровождается испарением жидкости и образованием газа. Газообразное вещество поступает в компрессор, где пар конденсируется и снова переходит в жидкое состояние.

Чтобы не повредить холодильник и избежать утечек, нельзя:

  • использовать для чистки камеры колющие и режущие инструменты;
  • ронять продукты и куски льда на видимую часть испарителя;
  • устанавливать агрегат около батареи или отопительного оборудования;
  • мыть холодильник горячей или даже теплой водой.

Если хозяйка неправильно размораживает холодильник, испаритель может разгерметизироваться. Произойдет утечка, жидкость начнет испаряться. В месте повреждения появится иней, но шипения слышно не будет.

Очень легко повредить испаритель, соскребая снег со стенок морозилки. Если на дно магистрали упадет большой кусок льда, можно пробить трубопровод. При первом же подозрении, что началась утечка, надо обратиться в специальную мастерскую. Если трубопровод поврежден сильно, придется менять испаритель. При незначительных поломках его можно отремонтировать.

Но сначала надо с помощью специального прибора найти места утечек и запаять поврежденные участки трубопровода. Паять следует, только когда весь фреон выпущен из системы. Для этого понадобится вакуумный насос.

Важно! Для заправки новых моделей холодильников используется всего 200 грамм хладагента. Чтобы узнать точное количество фреона, достаточно посмотреть на бирку компрессора.

Компрессорная станция

Для заправки нужно специальное оборудование – компрессорная станция. Обычно такая установка оснащена двумя измерительными приборами. Но в данном случае следует ориентироваться на показания манометра низкого давления.

Важно! Прежде, чем подключить установку к холодильнику и баллону с фреоном, надо перекрыть все краны. На стенках заправочного цилиндра есть метки, по которым можно контролировать количество хладагента.

Следует соблюдать порядок подключения патрубков заправочной станции:

  • правый подсоединяется к насосу;
  • средний соединяется с баллоном;
  • левый – с клапаном Шредера.

Заправляя холодильник хладагентом, важно соблюдать правила техники безопасности. Если же агрегат куплен недавно, и гарантия еще действует, лучше обратиться в сервисный центр.

Когда фреон закачан, следует убедиться, что контур испарителя замкнут. Иначе он будет вытекать из трубопровода. Выход хладагента происходит бесшумно, поэтому обнаружить новую утечку сложно. Для этого нужно специальное оборудование.

Назначение хладагента, его свойства и способы работы с ним

Процесс охлаждения в холодильных установках происходит в результате кипения фреона — газообразного вещества, который выполняет функцию хладагента (теплообменника). Этот материал не только является основным функциональным элементом, но и выполняет роль смазочного состава для компрессора устройства.

Читайте также  Почему холодильник морозит и не отключается

Температура кипения фреона напрямую зависит от давления окружающей среды. Чтобы в холодильнике или кондиционере сохранялся цикл конденсации и испарения вещества, нужно поддерживать в системе установленный уровень давления.

В холодильных установках применяются разные виды фреона, имеющие свой химический состав и особенности. Чаще всего применяются хладагенты следующих типов:

  • R-22.
  • R-134a.
  • R-407.
  • R-410a.

Температура кипения у хладагентов различается, её можно определить по специальным техническим таблицам. Для заправки того или иного холодильного устройства, нужно учитывать тип фреона, который оно использует в работе. При необходимости, фреон можно заменять хладагентом со сходными показателями давления и температурой кипения.

температура кипения

Схема холодильного цикла

Охлаждение воздуха в кондиционере и другом холодильном оборудовании обеспечивается циркуляцией, кипением и конденсацией фреона в замкнутой системе. Кипение происходит при низком давлении и температуре, а конденсация при высоком давлении и температуре.

Такой способ работы называется холодильным циклом компрессионного типа, так как для движения хладагента и повышения давления в системе используется компрессор. Рассмотрим схему компрессионного цикла поэтапно:

  1. При выходе из испарителя вещество пребывает в состоянии пара с низким давлением и температурой (участок 1-1).
  2. Затем пар поступает в компрессионную установку, которая повышает его давление до 15–25 атмосфер и температуру в среднем до 80 °C (участок 1-2).
  3. В конденсаторе хладагент охлаждается и конденсируется, то есть переходит в жидкое состояние. Конденсация производится с воздушным или водяным охлаждением в зависимости от вида установки (участок 2-3).
  4. При выходе из конденсатора, фреон попадает в испаритель (участок 3-4), где, в результате снижения давления, начинает кипеть и переходит в газообразное состояние. В испарителе фреон забирает тепло из воздуха, благодаря чему воздух охлаждается (участок 4-1).
  5. Затем хладагент движется в компрессор и цикл возобновляется (участок 1-1).

схема холодильного цикла

Все холодильные циклы состоят из двух областей — с низким и высоким уровнем давления. За счёт разницы давления происходит преобразование фреона и его движение по системе. При этом чем выше уровень давления, тем выше температура кипения.

Компрессионный цикл охлаждения используется при работе многих холодильных систем. Хотя кондиционеры и холодильники различаются по конструкции и назначению, они работают по единственному принципу.

Признаки утечки фреона

Хладагент фреон в кондиционерах подвержен утечке в процессе эксплуатации. В течение года использования количество фреона уменьшается на 4–7% естественным образом. Однако при неисправной работе кондиционера или повреждениях внутреннего блока, утечка может произойти и в новом устройстве. Её важно определить на начальном этапе и вовремя дозаправить устройство хладагентом.

Основные признаки утечки фреона:

  • Плохое охлаждение помещения.
  • Появление инея на деталях внутреннего и внешнего блока.
  • Подтеки масла под кранами.
  • Повышенный шум и вибрации устройства при работе.
  • Появление неприятного запаха при работе кондиционера.

Если утечка произошла в результате длительного использования, работоспособность кондиционера можно восстановить, заправив его хладагентом. При повреждении деталей и фреоновых трубок, по которым движется цикл, потребуется не только дозаправка, но и вмешательство специалистов по ремонту охладителей.

заправка кондиционера

Способы заправки кондиционера

Заправку кондиционеров фреоном рекомендуют производить не реже, чем раз в 1.5-2 года. За это время происходит естественная утечка значительной части хладагента, которую необходимо восполнить. Эксплуатация охладителей без дозаправки в течение 2 лет и более может привести к поломке устройства из-за перегрева и износа деталей, а также утечки масла.

Дозаправкой устройств кондиционирования занимаются специализированные службы. Однако если есть необходимые инструменты, эту процедуру можно провести самостоятельно.

дозаправка кондиционера

Как правило, кондиционер не требует полной заправки, а нуждается лишь в восполнении того количества хладагента, которое испарилось в результате утечки. Поэтому важнейшим этапом работ является определение уровня утечки вещества.

Новичок может сделать эту процедуру двумя способами:

  • По давлению. Чтобы узнать количество фреона, нужно посмотреть в инструкцию кондиционера — там будет указан уровень давления в системе. Затем необходимо присоединить к устройству коллектор — он покажет реальный уровень давления в охладителе. Путём вычитания полученной величины из параметров, указанных в документах, несложно узнать необходимое количество вещества для дозаправки.
  • По массе. При полной заправке кондиционера, можно узнать необходимый объем по массе. Для этого также нужно обратиться к документации. При заполнении устройства фреоном, баллон с хладагентом для кондиционера ставится на точные весы. В процессе перекачивания, нужно внимательно следить за весом баллона и при восполнении недостатка вещества, сразу отключать систему.

Заправка кондиционера: алгоритм действий

Перед тем как заправить систему кондиционирования фреоном, нужно подобрать необходимые инструменты и материалы. Для этого потребуется манометр, баллон с фреоном, вакуумный насос, а также весы, по которым будет определяться объем хладагента в кондиционере.

инструменты для заправки

Алгоритм действий при заправке кондиционера:

  • Сначала нужно отключить охладитель от электричества и определить необходимое для заправки количество фреона по весу или давлению в системе.
  • А также нужно «продуть» трубки с помощью азота, чтобы удалить из системы лишние примеси и убедиться в герметичности системы. Это важно сделать в том случае, если существует подозрение на утечку хладагента из-за повреждения системы.
  • Затем нужно закрыть трехходовой клапан по часовой стрелке.
  • Чтобы определить уровень давления и совершить дозаправку, нужно присоединить к штуцеру манометрический коллектор.
  • После этого трехходовой клапан снова открывается, к коллектору присоединяется баллон с хладагентом и перекачивается в систему.

Сравнительная таблица хладагентов

Ранее при производстве холодильных установок использовали аммиак, как хладагент. Однако это вещество губительно влияет на экологию и разрушает озоновый слой, а в больших количествах может создавать проблемы со здоровьем у людей. Поэтому учёные и производители начали разрабатывать другие виды охлаждающих веществ.

Современные виды хладагентов безопасны для экологии и людей. Они представляют собой различные типы фреонов. Фреон — это вещество, которое содержит фтор и насыщенные углеводороды, отвечающее за теплообмен. На сегодняшний день существует более сорока видов таких веществ.

Фреоны активно используются в бытовых и промышленных приборах, работающих на охлаждение воздуха и жидкостей:

  • В качестве хладагента в холодильнике.
  • Для охлаждения морозильной камеры.
  • Как хладагенты для сумок-холодильников.
  • Для охлаждения воздуха в кондиционере.

Таблица свойств позволяет выбрать оптимальный вид хладагента. Она отражает основные свойства фреонов: температуру кипения, теплоту парообразования, плотность.

При заправке кондиционера могут понадобиться и сравнительные таблицы фреонов. Они определяют вещества, которыми можно заменить тот или иной хладагент, если его не удалось найти в продаже. Ниже представлена упрощённая версия такой таблицы с наиболее распространёнными типами охладителей.

9 лучших хладагентов

Алена Усманова

В большинстве современных холодильников в заводских условиях на данный момент особенно активно используется всего два хладагента – R600a и R134а. Но помимо них существуют и другие фреоны, которые могут оказаться лучшими в плане энергоэффективности, простоты заправки, холодопроизводительности. Ко всем подобным веществам предъявляются повышенные требования в плане озонобезопасности и потенциала глобального потепления, именно поэтому некоторые варианты старого поколения постепенно выходят из оборота. В этом рейтинге вы найдете хладагенты, которые в данный момент более или менее активно применяются для заправки холодильников.

Топ-9. R22

Этот фреон может использоваться во всех холодильных установках старого типа, совместим с большинством видов масел.

  • Средняя цена: 8750 руб.
  • Страна: Россия
  • Объем: 13.6 кг
  • Температурный диапазон: низкотемпературный
  • Критическая температура: 96.13°C
  • Критическое давление: 4.98 МПа
  • Воспламеняемость: нет
  • Токсичность: нет

Универсальный, но уже устаревший хладагент, область применения которого сейчас ограничена из-за повышенных требований к безопасности для озонового слоя и потенциала парникового эффекта. Используется только для систем старого образца, для современных холодильников не пригоден. Но для устаревших систем он универсален, подходит для любых типов компрессоров, терморегуляторов и совместим почти со всеми видами масел, но все же предпочтительно выбирать минеральное. Если бы не наличие в продаже более современных хладагентов нового поколения, фреон R22 можно было бы считать одним из самых эффективных вариантов в виду отличных теплодинамических и теплофизических свойств.

  • Подходит для бытовых и промышленных холодильников
  • Не воспламеняется на воздухе, не токсичен
  • Универсален, подходит для всех типов компрессоров
  • Отличные теплофизические и теплодинамические свойства
  • Низкая температура нагнетания
  • Хладагент старого поколения, влияет на озоновый слой
  • Не подходит для новых современных холодильников

Топ-8. R32

  • Средняя цена: 3500 руб.
  • Страна: Китай
  • Объем: 10 кг
  • Температурный диапазон: среднетемпературный
  • Критическая температура: 78.1°C
  • Критическое давление: 5.78 МПа
  • Воспламеняемость: да
  • Токсичность: нет

R32 чаще применяется в системах кондиционирования, нежели в холодильниках. Но он часто используется в качестве добавки к другим фреонам для лучшей энергоэффективности и холодопроизводительности. В чистом виде заливается в системы редко из-за повышенной взрывоопасности. С другой стороны, однокомпонентный состав дает возможность проводить дозаправку, несмотря на остаточное количество хладагента. Поэтому в климатическом оборудовании некоторых известных компаний (например, Daikin) этот фреон встречается нередко. Для сравнения – по техническим характеристикам R32 схож с R410, но является менее вязким, что уменьшает скорость расходования.

  • Низкая скорость расходования
  • Экологичность, отсутствие токсичности
  • Высокая холодопроизводительность и энергоэффективность
  • Взрывоопасен, не используется в чистом виде
  • Чаще применяется в кондиционерах, чем в холодильниках

Топ-7. R290

  • Средняя цена: 1900 руб.
  • Страна: Россия
  • Объем: 5 кг
  • Температурный диапазон: среднетемпературный
  • Критическая температура: 96.7°C
  • Критическое давление: 4.25 МПа
  • Воспламеняемость: да
  • Токсичность: нет

Использование R290 для заправки бытовых, промышленных холодильников, тепловых насосов и другого подобного оборудования целесообразно с точки зрения его невысокой стоимости и отсутствия токсичности. Важную роль играет и совместимость с любыми конструкционными материалами, недорогими минеральными маслами. К плюсам можно отнести и низкую температуру на выходе из компрессора. При всех своих достоинствах хладагент этого типа обеспечивает довольно высокую холодопроизводительность. Но есть и причины, из-за которых не все готовы работать с фреоном R290. Это требования к конструктивным особенностям оборудования (увеличенный размер компрессора) и взрывоопасность.

  • Высокая холодопроизводительность
  • Низкая температура на выходе из компрессора
  • Продлевает ресурс работы компрессора
  • Хорошо совместим с недорогими минеральными маслами
  • Взрывоопасен, требует осторожности при работе
  • Нужен увеличенный размер компрессора

Топ-6. R410A

Этот фреон не воспламеняется, не токсичен для человека, не оказывает разрушительного действия на озоновый слой.

  • Средняя цена: 3300 руб.
  • Страна: Китай
  • Объем: 11.3 кг
  • Температурный диапазон: среднетемпературный
  • Критическая температура: 72.13°C
  • Критическое давление: 4.926 МПа
  • Воспламеняемость: нет
  • Токсичность: нет

Фреон нового поколения имеет достаточно высокую удельную холодопроизводительность, не оказывает негативного влияния на озоновый слой, не воспламеняется, не токсичен для человека. Применяется он в системах кондиционирования высокого давления, промышленных и бытовых холодильниках. Подходит не для всех моделей, при заправке нужно учитывать особенности конструкции, характеристики компрессора, запас прочности холодильного контура. Но зато в случае утечки оставшийся фреон сохраняет все свои свойства, поэтому процесс дозаправки предельно простой. Хладагент вполне пригоден для использования в обычных бытовых холодильниках, но только при условии соответствия характеристик установленного в нем оборудования.

Читайте также  Почему в холодильнике что то журчит

Технология проведения заправочных работ.

Технологические особенности работы с изобутаном.

  • Измерение заправочной дозы изобутана выполняют с помощью весов. Поскольку при заправке изобутаном заправочная доза невелика, следовательно, точность весов должна составлять ±1 г.
  • Если при выполнении ремонтных работ на БХП компрессор не заменяется, то следует удалить изобутан из масла, имеющегося в агрегате. Для этого достаточно включить компрессор примерно на 1 минуту.
  • При выполнении работ на БХП применяют трехслойный фильтр дегидратации типа ХН9 (или аналогичный).
  • «Ремонтная» заправочная доза изобутаном при всех видах ремонта БХП (кроме замены компрессора) должна быть на 3 г меньше технологической дозы.
  • Если в процессе проведения заправочных работ произведено заполнение системы ошибочной (неточной) дозой изобутана, наиболее оптимально произвести вакуумирование системы заново, а затем повторить заправку.
  • Не допускать, чтобы холодильный агрегат находился в «открытом» состоянии (без избыточного давления) более 15 минут.
  • Утечку хладагента контролируют на стороне всасывания при неработающем компрессоре, а на стороне нагнетания — во время работы компрессора, проверяя каждый стык не менее 3 с. Недопустимо применять течеискатели, предназначенные для фреонов R12 или R134a.
  1. В первую очередь необходимо произвести визуальный осмотр БХП (в рабочем и нерабочем состояниях);
  2. производят проверку герметичности системы с помощью электронного течеискателя для горючих газов (в нерабочем и рабочем состояниях холодильного агрегата);
  3. проверяют давление в системе через технологический патрубок при помощи игольчатого захвата.

Компрессоры и хладагенты

  • Теоретически, более долгий срок службы — т.к. каждый компрессор соответствует своей камере и срабатывает по необходимости.
  • Производительность холода больше у холодильников с двумя компрессорами
  • Более удобное управление благодаря тому, что можно регулировать температуру определенной камеры независимо от другой, также отдельно включать/отключать холодильную и морозильную камеры.

Хладагенты бытовых холодильников

06 сентября 2005 09:08

http://www.holodilnik.info/articles/hladagent Автор: В.В.Пискунов эксклюзивно для Холодильник.Инфо

Хладагентом (сокращение от слов «холодильный агент») принято называть рабочее вещество с низкой температурой кипения (испарения), с помощью которого осуществляется охлаждение в абсорбционных и компрессионных холодильных машинах. В абсорбционных бытовых холодильниках в качестве хладагента применяют водоаммиачный раствор. В компрессионных бытовых холодильных приборах (БХП) применяют разные марки хладагентов. В термоэлектрических холодильниках хладагента нет: электрическая энергия преобразуется непосредственно в тепловую, когда электрический ток проходит через полупроводниковые элементы: внутренние участки элементов охлаждаются, а наружные нагреваются.

На хладагенты, являющиеся охлаждающими низкозамерзающими жидкостями, установлены государственные и международные стандарты. Хладагенты должны быть нейтральными к металлам, сплавам и другим материалам, используемым при изготовлении холодильного агрегата. Они не должны быть взрывоопасными и воспламеняющимися в смеси с воздухом и маслами. Они не должны быть ядовитыми, не должны вызывать удушья и раздражения слизистых носа и дыхательных путей человека, не должны отравлять или ухудшать экологическую среду. Хладагенты современных БХП не должны содержать веществ, разрушающих озон или вызывающих парниковый эффект. Они должны быть экологически безопасными, не оказывающими влияния на образование «озоновых дыр» в атмосфере или глобальное потепление климата.

При нормальном атмосферном давлении все хладагенты компрессионных БХП имеют газообразное состояние. Под давлением в герметичных емкостях они сжижаются и сохраняются в жидком состоянии. Фазовое состояние хладагентов в отдельных составных частях герметичных холодильных агрегатов БХП зависит от давления и температуры. При высоком давлении это жидкость, а при низком газ. При сжатии хладагент нагревается, а при расширении (кипении и испарении) охлаждается.

В компрессор БХП должен поступать обязательно газообразный хладагент, чтобы не происходили гидравлические удары и разрушения деталей компрессора. Под давлением компрессора газообразный хладагент сжимается и при этом выделяет тепло. Поэтому трубки на выходе из компрессора при его работе всегда горячие. Из компрессора горячий газ поступает в конденсатор. По мере охлаждения в конденсаторе сжатый газ постепенно превращается в жидкость. На входном участке конденсатора это чистый газ с температурой на десятки оС выше окружающей, на среднем газ с конденсировавшимися каплями жидкости и жидкость с пузырьками газа, а на выходе однородная жидкость с температурой, близкой к окружающей.

При работающем компрессоре нагнетательный трубопровод и входной участок конденсатора должны быть горячими, а участок конденсатора на выходе хладагента немножко теплее окружающего воздуха.

Под действием разрежения, создаваемого во всасывающем трубопроводе компрессора жидкий хладагент из конденсатора поступает в испаритель. При разрежении в испарителе происходит кипение (испарение) жидкого хладагента. При испарении хладагент отбирает тепло от стенок испарителя и охлаждает камеру БХП.

Первые компрессионные холодильники работали на сернистом ангидриде. Этот газ опасен для здоровья человека и имеет неприятный запах. Практически с 50-х и до конца 80-х годов прошлого века во всех компрессионных БХП отечественного и зарубежного производства в качестве хладагента применяли фреон-12, получивший условное международное обозначение R12 (по первой букве английского слова Refrigerant). Для смазки деталей компрессора использовали минеральное масло, растворимое во фреоне («фреоновое масло»). При обычных условиях R12 представляет собой нейтральный газ без цвета и запаха, не представляющий серьезной угрозы для здоровья человека. В холодильнике средних размеров его менее 100 г. и при аварийном нарушении герметичности системы он быстро улетучивается.

Производство фреона-12 было организовано впервые в 1931 г. американской фирмой Frigidaire, которая затем продала свои патенты концерну DU PONT. В начале 90-х DU PONT выпустил на замену R12 новый альтернативный хладагент R134a, не разрушающий озон.

В 80-е годы было открыто разрушающее воздействие атомарного хлора на озон в атмосфере. Озоновый слой в атмосфере служит защитным щитом от космических излучений для всего живого на Земле. Из открытия ученые сделали вывод о глобальной угрозе здоровью людей и окружающей природе из-за истощения озонового слоя в результате промышленной деятельности, в том числе выброса в атмосферу фреонов. В качестве подтверждения глобальной угрозы приводили расширение «озоновых дыр» над полюсами Земли. Принятые международные соглашения призывали все страны к прекращению производства и потребления веществ, разрушающих озон. Монреальский протокол 1987 г. предусматривал постепенный перевод производства БХП во всех странах на озононеразрушающие хладагенты. Поскольку фреон 12 в своем составе содержит хлор, который разрушает озон, он попал в перечень запрещенных хладагентов.

В последующие годы наблюдалось сужение «озоновых дыр», никак не связанное с производством фреонов для холодильников. Мнение других ученых о циклическом характере изменения размеров «озоновых дыр», как глобальных явлений природы, и не возможном влиянии на них тех объемов фреонов, которые производились в 80-е годы, не было принято экологами. Фреон-12 был «осужден» окончательно.

Во исполнение Монреальского протокола взамен единого хладагента R12 в разных странах стали разрабатывать озонобезопасные и экологически чистые хладагенты. По энергетическим характеристикам некоторые из них даже превосходят традиционный R12. В США разработали озонобезопасный хладагент R 134а, который нельзя использовать в холодильных машинах, спроектированных под R12. Новый хладагент должен работать вместе со специальным синтетическим маслом, которое разрушает электроизоляционные материалы электродвигателей компрессоров, спроектированных для работы на R12 с минеральным маслом. Для перевода производства БХП с R12 на R134a необходимы существенные конструктивные изменения компрессоров, электродвигателей и всей системы охлаждения. Большие затраты на переоснащение производства, необходимые для перехода с R12 на R134а, явились главным препятствием внедрению этого хладагента в производство отечественных БХП.

В 90-е годы международные организации по защите климата Земли пришли к выводу о глобальной опасности потепления. В 1997 г. был принят Киотский протокол, направленный на ограничение выбросов в атмосферу «парниковых газов». Этот протокол обязывает страны докладывать в международный комитет по защите климата Земли о выбросах в атмосферу парниковых газов.

Вместо R12 и R134a в Германии в 90-х годах стали применять природный газ изобутан, совместимый с минеральными маслами. Этот хладагент получил условное сокращенное международное обозначение R600a. Он не разрушает озон и не вызывает парниковый эффект, и поэтому получает все большее признание. Около 10 % БХП в мире и более 35 % в Европе (в том числе холодильники «Атлант») в 2005 г. работают на R600a. По теплофизическим и эксплуатационным характеристикам R600a превосходит R134a. Самые экономичные холодильники с классами энергопотребления А+ и А++ работают на R600a. Природные углеводороды, как хладагенты, не находили широкого применения в БХП из-за повышенной пожарной опасности. В современных конструкциях эту проблему решили благодаря уменьшению дозы заправки до таких объемов, которые практически не могут привести к пожару. Доза заправки бытовых холодильников и морозильников столь мала, что даже при полной утечке хладагента из агрегата его концентрация в кухне объемом 20 куб.м будет ниже порога горючести в десятки раз.

В 130-литровом холодильнике всего 20 г R600a, а в начале прошлого века в холодильник такого же объема заправляли 250 г изобутана.

В России взамен R12 используют импортные хладагенты R134a и начинают применять экологически чистые хладагенты отечественной разработки: диметиловый эфир, пропан, бутан, изобутан и их смеси. На российских предприятиях освоено производство R600a. Российские хладагенты на основе смесей газов известны под марками: С-1, С-2, СМ-1, Экохол-3.

Хладагент С-1 представляет собой смесь углеводородов и фторуглеродов (азеотропная смесь R152/R600a). Хладагент СМ-1 представляет собой смесь R134a/R218/R600, по термодинамическим характеристикам близкую к R12. Совместимость С-1 и СМ-1 с минеральным маслом ХФ 12-16 и конструкционными материалами отечественных компрессоров позволяет максимально упростить процесс перехода с R12 на отечественные хладагенты.

Все хладагенты, применяемые в массовых БХП, обладают очень высокой текучестью и не имеют ни цвета, ни запаха. Они способны проникать даже через микротрещины и микропоры обыкновенного чугуна (воздух, вода и керосин не проникают через такой чугун).

Особо высокие требования предъявляют к герметичности холодильных агрегатов, работающих на смесях из низкокипящих газов с разными температурами кипения. При нарушении герметичности системы в первую очередь улетучиваются высококипящие фракции. Самая малая утечка одной из фракций приводит к нарушению соотношения пропорций между ними, к изменению температуры кипения хладагента и нарушению температурного режима работы БХП. При устранении утечек возникают повышенные трудности, поскольку исключается возможность дополнения хладагента или только улетучившейся фракции. Из-за разных температур кипения газов приходится полностью перезаправлять холодильный агрегат.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: