Сколько градусов должно быть на выходе кондиционера

Как правильно пользоваться кондиционером

Небывалая жара, установившаяся этим летом в России, нанесла ощутимый ущерб владельцам старых транспортных средств, двигатели которых имеют водяное охлаждение. То и дело можно увидеть, как на окраине дороги стоит подержанная «тройка» или «пятерка» ВАЗ с открытым капотом, из-под которого валит белый пар. Не меньше проблем усиливающееся с каждым годом пекло доставляет тем, чьи машины не оборудованы климатическими системами – кондиционерами и климат-контролями. Им точно не позавидуешь: езда с открытыми окнами от жары особо не спасает, зато приносит другие неприятности: шум, вонь выхлопных газов, и, что самое печальное, повышенный расход топлива. Конечно, езда с включенным кондиционером или климат-контролем тоже влияет на топливный «аппетит» автомобиля, который во многом сопоставим с повышенным расходом двигателя машины, у которой во время движения открыты все окна. Но у кондиционированного автомобиля есть свои неоспоримые преимущества – тот же климатический комфорт в салоне. Правда, создать этот самый комфорт нужно с умом, ведь неправильное пользование климатической системой может привести к ее поломке, так и к проблемам со здоровьем у пассажиров авто. Сегодня мы дадим несколько советов, как правильно пользоваться кондиционером в автомобиле.

Каждый уважающий себя автолюбитель, заботящийся об исправном состоянии и своего «железного коня», накануне сезонов проводит диагностику всех систем – в том числе и климатической. Осенью мы проверяем работу отопителя, весной – кондиционера. Не зря в апреле-мае интернет пестрит объявлениями о скидках на диагностику кондиционеров – ее рекомендуется проводить два раза в год, весной и осенью. Что включает в себя диагностика кондиционера? Перво-наперво, проверку уровня фреона – вещества, ответственного за охлаждение воздуха, поступающего в салон из кондиционера. Если этот уровень меньше нормы, то это чревато как плохим охлаждением воздуха, так и выходом из строя частей охлаждающей установки – компрессора, конденсора (радиатор кондиционера) и напорной магистрали. Причина таких неприятностей – разгерметизация системы кондиционирования, которая может наступить в результате образования микротрещин на корпусе конденсора или трубок, по которым течет смешанный со специальным маслом, выполняющим смазывающую функцию для трущихся деталей системы, фреон.

Специалист проверяет всю систему, и при обнаружении очагов разгерметизации принимает решение о замене вышедших из строя деталей. Это – серьезные последствия, диагнозом которых становится падение уровня фреона. Но есть и другие причины. Фреон – газ, и как все подобные вещества, он испаряется естественным путем. Так что падение уровня фреона может быть продиктовано сроком службы автомобильного кондиционера без его дозаправки. Помимо проверки уровня фреона, нужно следить и за тем, чтобы на испарителе не образовывались грибки. Эту проблему выдает неприятный запах при включении кондиционера – пахнет мокрой собакой. В сервисных центрах эту проблему устраняют при помощи дезинфекции испарителя и смены фильтров кондиционера. Провести такие операции можно и самостоятельно. В любом случае, советуем вам не игнорировать рекомендации автопроизводителей по обслуживанию автомобильных кондиционеров и регулярно диагностировать их состояние.

1. Проветриваем автомобиль. Не следует включать кондиционер сразу же, как только заведете двигатель, особенно если машина стояла на солнце, а в салоне образовался «Ташкент». Первым делом открываем в авто все окна и минут 10 проветриваем салон. После этого окна закрываем, и включаем вентилятор кондиционера сначала на «единичку», установив указатель температуры в среднее положение, а по истечении нескольких минут – на «двойку», повернув тумблер датчика температуры на максимум. Охлаждать салон лучше не на стоянке, а в движении – поступающий внутрь салона воздух извне на скорости облегчит задачу кондиционера по созданию комфортной температуры. Также важно при охлаждении салона, особенно если температура за бортом выше +25 градусов, не направлять холодный воздух на стекла – из-за резкого перепада температур, в стекле могут образоваться микротрещины, которые со временем перерастут в большие трещины. 2. Устанавливаем корректный режим охлаждения. Не рекомендуется долгое время ездить в авто, кондиционер которого работает на максимуме – так недолго и ангину подхватить. Поэтому после достаточного охлаждения воздуха в салоне лучше установить скорость вентилятора на «двойку» или «единичку», а также повысить температуру. 3. Устанавливаем оптимальную температуру в салоне. Медики говорят, что самая комфортная температура в салоне автомобиля – 20-22 градуса. Поэтому, чтобы избежать простудных заболеваний, после достаточного охлаждения интерьера, лучше установить указанную выше температуру (если кондиционер не цифровой, а механический – то выставить указатель температуры на средние деления), а обдув направить на ноги. 4. Правильно регулируем приток воздуха в салон. Если охладить воздух в салоне автомобиля нужно быстро, то включаем режим внутренней циркуляции воздуха.

Таким образом, в интерьере образуется замкнутое пространство, ограничен доступ горячего воздуха извне, и салон быстрее охлаждается. Такой способ часто применяют, когда авто стоит на стоянке или если температура воздуха вне автомобиля выше 25 градусов. 5. Следим за направлением холодного воздуха. Автомобильные производители не зря оснастили воздуховоды «шторками»-дефлекторами, при помощи которых можно регулировать направление потока воздуха и его интенсивность. При кондиционировании важно настроить все дефлекторы так, чтобы охлажденный воздух равномерно распределялся по салону. Приведенные рекомендации в большей части подойдут для владельцев автомобилей, оснащенных механическими кондиционерами. Автоматические климатические системы обучены регулировать все параметры автономно, без участия водителя.

Какую температуру нужно выставлять на кондиционере?

Правило №1: выставляйте на пульте кондиционера именно ту температуру, которую в итоге Вы хотите получить в своей комнате для того, чтобы чувствовать себя в ней комфортно — для большинства людей это 25 или 26 градусов, иногда 24, но никак не меньше! Именно эту температуру и нужно устанавливать на Вашем пульте ДУ.

Как правильно выставить температуру в кондиционере?

Настройка на холод состоит из 6 этапов:

  1. Нажать кнопку ON на корпусе внутреннего блока (обычно она находится справа). …
  2. Затем нужно включить кондиционер путем нажатия «ON» на пульте. …
  3. Нажимая «Mode», выбираем нужный режим, то есть охлаждение. …
  4. С помощью «Temp»» ( «+», «-») выставляет необходимую температуру.

Какую температуру нужно ставить на кондиционере летом?

В основном, оптимальная для охлаждения воздуха температура кондиционера составляет 22–25? C.

Какой режим ставить на кондиционер?

Общие режимы кондиционера

  • Сool – прохлада, обозначается снежинкой.
  • Heat – нагрев, имеется значок солнца.
  • Dry – осушение, значок – капля.
  • Fan speed – вентиляция, рядом с надписью показан пропеллер.
  • Sleep – ночной авторежим. …
  • Тimer – таймер. …
  • Swing – направление воздушного потока посредством шторок.

Сколько градусов должно быть на выходе кондиционера?

При запуске кондиционера на тепло выставляйте +30 градусов — это кратковременный режим. После достижения прогрева помещения нужно снизить температуру на пульте управления кондиционером до +25 градусов — это средняя температура.

Какая самая холодная температура в кондиционере?

Если сравнивать модели on/off и инверторные, то у первых предельная минимальная температура охлаждения кондиционера составляет -5°C, в то время как у вторых – до -15°C.

Как правильно включать кондиционер в жару?

Как правильно настроить температуру летом?

  1. включить кондиционер и дать ему охладить комнату до 28 градусов;
  2. через 10-15 минут можно снизить температуру до 25 градусов;
  3. через 30-40 минут температуру можно понизить до 23 градусов.

Какая температура кондиционера безопасна?

В теплое время года оптимальная температура воздуха в помещении — 20-25 градусов. В идеальной ситуации, она должна быть ниже максимум на 5 градусов той, что за окном. Даже если хочется быстро охладиться, не стоит опускаться ниже этого коридора, хотя бы первые часы работы кондиционера.

Как правильно охладить комнату кондиционером?

Установите температуру охлаждения на 24 градуса.

Комфортной для человека является температура около 24 С0. На эту температуру и следует устанавливать настройки кондиционера. Кондиционеру легче опустить температуру до 24, чем до 16 градусов. На это потребуется меньше энергии, а чувствовать себя вы будете прекрасно.

Сколько по времени должен работать кондиционер?

Современные кондиционеры могут проработать не менее 12-15 лет даже при «спартанских» условиях.

Что означают значки на пульте от кондиционера?

Обозначение значков на пульте кондиционера

On/off — включает и отключает прибор. Снежинка (cool) — охлаждение. Солнышко (heat) — обогрев. … Часы (timer) — устанавливают время работы кондиционера.

Читайте также  Как избавиться от стойкого запаха в холодильнике

Что значит FAN на пульте кондиционера?

За эту функцию кондиционера отвечает кнопка Fan Speed, что в переводе с английского означает «скорость вентилятора». … Функция Fan присутствует не у всех моделей. При ее активации кондиционер превращается в обычный вентилятор, только более мощный и тихий.

Как включить кондиционер на осушение?

Пошаговая инструкция включения кондиционера в режиме осушки

  1. Включаем кондиционер одним нажатием на кнопку on/off.
  2. Далее кнопкой Mode нажимаем несколько раз, пока на дисплее пульта не высветится капелька или надпись Dry.
  3. Далее кнопками Temp или стрелками выбираем нужную температуру.

Когда можно включать кондиционер на тепло?

Большинство современных кондиционеров могут работать на обогрев только при условии, что температура за окном не ниже -7°C… -15°C. Более точную информацию по нижнему температурному порогу можно найти в инструкции к устройству.

Сколько градусов должно быть на выходе кондиционера

Логотип компании

Автор: Брух Сергей Викторович.

Группа компаний «МЭЛ» — оптовый поставщик систем кондиционирования Mitsubishi Heavy Industries.

www.mhi-systems.ru Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра.

Компрессорно-конденсаторные блоки (ККБ) для охлаждения вентиляции получают все большее распространение при проектировании систем центрального охлаждения зданий. Преимущества их очевидны:

Во-первых, это цена одного кВт холода. По сравнению с чиллерными системами охлаждение приточного воздуха с помощью ККБ не содержит промежуточного хладоносителя, т.е. воды или незамерзающих растворов, поэтому обходится дешевле.

Во-вторых, удобство регулирования. Один компрессорно конденсаторный агрегат работает на одну приточную установку, поэтому логика управления едина и реализуется с помощью стандартных контроллеров управления приточных установок.

В-третьих, простота монтажа ККБ для охлаждения системы вентиляции. Не нужно дополнительных воздуховодов, вентиляторов и т.д. Встраивается только теплообменник испарителя и все. Даже дополнительная изоляция приточных воздуховодов часто не требуется.

LENNOX и схема его подключения к приточной установке

Рис. 1. ККБ LENNOX и схема его подключения к приточной установке.

На фоне таких замечательных преимуществ на практике сталкиваемся с множеством примеров кондиционирования системы вентиляции, в которых ККБ либо вообще не работают, либо в процессе работы очень быстро выходят из строя. Анализ этих фактов показывает, что часто причина в неправильном подборе ККБ и испарителя для охлаждения приточного воздуха. Поэтому рассмотрим стандартную методику подбора компрессорно конденсаторных агрегатов и постараемся показать ошибки, которые допускаются при этом.

НЕПРАВИЛЬНАЯ, но наиболее часто встречающаяся, методика подбора ККБ и испарителя для прямоточных приточных установок

  1. В качестве исходных данных нам необходимо знать расход воздуха приточной установки. Зададим для примера 4500 м3/час.
  2. Приточная установка прямоточная, т.е. без рециркуляции, работает на 100% наружном воздухе.
  3. Определим район строительства – например Москва. Расчетные параметры наружного воздуха для Москвы +28С и 45% влажность. Эти параметры принимаем за начальные параметры воздуха на входе в испаритель приточной системы. Иногда параметры воздуха принимают «с запасом» и задают +30С или даже +32С.
  4. Зададим необходимые параметры воздуха на выходе из приточной системы, т.е. на входе в помещение. Часто эти параметры задают на 5-10С ниже, чем требуемая температура приточного воздуха в помещении. Например, +15С или даже +10С. Мы остановимся на среднем значении +13С.
  5. Далее с помощью i-d диаграммы (рис. 2) строим процесс охлаждения воздуха в системе охлаждения вентиляции. Определяем необходимый расход холода в заданных условиях. В нашем варианте требуемый расход холода 33,4 кВт.
  6. Подбираем ККБ по требуемому расходу холода 33,4 кВт. Есть в линейке ККБ ближайшая большая и ближайшая меньшая модель. Например, для производителя LENNOX это модели: TSA090/380-3 на 28 кВт холода и TSA120/380-3 на 35,3 кВт холода.

Принимаем модель с запасом на 35,3 кВт, т.е. TSA120/380-3.

Рис. 2. I-D диаграмма работы испарителя приточки при стандартном (неправильном) подборе ККБ

Рис. 2. I-D диаграмма работы испарителя приточки при стандартном (неправильном) подборе ККБ

А теперь мы расскажем, что будет происходить на объекте, при совместной работе приточной установки и подобранного нами ККБ по вышеописанной методике.

Проблема первая – завышенная производительность ККБ.

Кондиционер вентиляции подобран на параметры наружного воздуха +28С и 45% влажность. Но заказчик планирует его эксплуатировать не только когда на улице +28С, в помещениях зачастую уже жарко за счет внутренних теплоизбытков начиная с +15С на улице. Поэтому на контроллере устанавливается температура приточного воздуха в лучшем случае +20С, а в худшем еще ниже. ККБ выдает либо 100% производительности, либо 0% (за редкими исключениями плавного регулирования при использования наружных блоков VRF в виде ККБ). ККБ при понижении температуры наружного (заборного) воздуха свою производительность не уменьшает (а фактически даже немного увеличивает за счет большего переохлаждения в конденсаторе). Поэтому при понижении температуры воздуха на входе в испаритель ККБ будет стремиться выдавать и меньшую температуру воздуха на выходе из испарителя. При наших данных по расчетам получается температура воздуха на выходе +3С. Но этого быть не может, т.к. температура кипения фреона в испарителе +5С.

Следовательно, понижение температуры воздуха на входе в испаритель до +22С и ниже, в нашем случае приводит к завышенной производительности ККБ. Далее происходит недокипание фреона в испарителе, возвращение жидкого хладагента на всасывание компрессора и, как следствие, выход компрессора из строя из за механического повреждения.

Но на этом наши проблемы, как ни странно, не кончаются.

Проблема вторая – ЗАНИЖЕННЫЙ ИСПАРИТЕЛЬ.

Давайте внимательно посмотрим на подбор испарителя. При подборе приточной установки задаются конкретные параметры работы испарителя. В нашем случае это температура воздуха на входе +28С и влажность 45% и на выходе +13С. Значит? испаритель подбирается ИМЕННО на эти параметры. Но что будет происходить, когда температура воздуха на входе в испаритель будет, например не +28С, а +25С? Ответить достаточно просто, если посмотреть на формулу теплопередачи любых поверхностей: Q=k*F*(Tв-Tф). k*F – коэффициент теплопередачи и площадь теплообмена не изменятся, эти величины постоянные. Тф – температура кипения фреона не изменится, т.к. она также поддерживается постоянной +5С (в нормальном режиме работы). А вот Тв – средняя температура воздуха стала меньше на три градуса. Следовательно, и количество переданного тепла станет меньше пропорционально температурному перепаду. Но ККБ «про это не знает» и продолжает выдавать положенные 100% производительности. Жидкий фреон снова возвращается на всасывание компрессора и приводит к вышеописанным проблемам. Т.е. расчетная температура испарителя является МИНИМАЛЬНОЙ рабочей температурой ККБ.

Тут можно возразить – «А как же работа он-офф сплит систем?» расчетная температура в сплитах +27С в помещении, а фактически они могут работать до +18С. Дело в том, что в сплит системах площадь поверхности испарителя подбирается с очень большим запасом, как минимум 30%, как раз для компенсации снижения теплопередачи при понижении температуры в помещении или снижении скорости вентилятора внутреннего блока. Ну и наконец,

Проблема третья – подбор ККБ «С ЗАПАСОМ»…

Запас по производительности при подборе ККБ крайне вреден, т.к. запас – это жидкий фреон на всасывании компрессора. И в финале имеем заклиненный компрессор. В целом максимальная производительность испарителя должна быть всегда больше, чем производительность компрессора.

Постараемся ответить на вопрос – а как же ПРАВИЛЬНО подбирать ККБ для приточных систем?

Во-первых, необходимо понимание того, что источник холода в виде компрессорно-конденсаторный блок не может быть единственным в здании. Кондиционирование системы вентиляции может только снять часть пиковой нагрузки, поступающей в помещение с вентиляционным воздухом. А подержание определенной температуры внутри помещения в любом случае ложится на местные доводчики (внутренние блоки VRF или фанкойлы). Поэтому ККБ должно не поддерживать определенную температуру при охлаждении вентиляции (это и невозможно по причине он-офф регулирования), а снижать теплопоступления в помещения при превышении определенной наружной температуры.

Пример системы вентиляции с кондиционированием:

Исходные данные: город Москва с расчетными параметрами для кондиционирования +28С и 45% влажность. Расход приточного воздуха 4500 м3/час. Теплоизбытки помещения от компьютеров, людей, солнечной радиации и т.д. составляют 50 кВт. Расчетная температура в помещениях +22С.

Производительность кондиционирования должна подбираться таким образом, чтобы ее хватало при наихудших условиях (максимальных температурах). Но также кондиционеры вентиляции должны без проблем работать и при неких промежуточных вариантах. Причем большую часть времени системы кондиционирования вентиляции работают как раз при загрузке 60-80%.

  • Задаем расчетную температуру наружного воздуха и расчетную температуру внутреннего. Т.е. главная задача ККБ – охлаждение приточного воздуха до температуры в помещении. Когда температура наружного воздуха меньше требуемой температуры воздуха в помещении – ККБ НЕ ВКЛЮЧАЕТСЯ. Для Москвы от +28С до требуемой температуры в помещении +22С получаем разность температур 6С. В принципе перепад температур на испарителе не должен быть больше 10С, т.к. температура приточного воздуха не может быть менее температуры кипения фреона.
  • Определяем требуемую производительность ККБ исходя из условий охлаждения приточного воздуха от расчетной температуры +28С до +22С. Получилось 13,3 кВт холода (i-d диаграмма).
Читайте также  Можно ли установить кондиционер зимой

Рис. 3. I-D диаграмма работы испарителя приточки при правильном подборе ККБ.

Рис. 3. I-D диаграмма работы испарителя приточки при правильном подборе ККБ.

  • Подбираем по требуемой производительности 13,3 ККБ из линейки популярного производителя LENNOX. Подбираем ближайший МЕНЬШИЙ ККБ TSA036/380-3с производительностью 12,2 кВт.
  • Подбираем испаритель приточки из наихудших для него параметров. Это температура наружного воздуха, равная требуемой температуре в помещении – в нашем случае +22С. Производительность испарителя по холоду равна производительности ККБ, т.е. 12.2 кВт. Плюс запас по производительности 10-20% на случай загрязнения испарителя и т.д.
  • Определяем температуру приточного воздуха при температуре наружного +22С. получаем 15С. Выше температуры кипения фреона +5С и выше температуры точки росы +10С, значит, изоляцию приточных воздуховодов можно не делать (теоретически).
  • Определяем оставшиеся теплоизбытки помещений. Получается 50 квт внутренних теплоизбытков плюс небольшая часть от приточного воздуха 13,3-12,2=1,1 кВт. Итого 51,1 кВт – расчетная производительность для систем местного регулирования.

Выводы: основная идея, на которую хотелось бы обратить внимание – это необходимость расчета компрессорно конденсаторного блока не на максимальную температуру наружного воздуха, а на минимальную в диапазоне эксплуатации кондиционера вентиляции. Расчет ККБ и испарителя, проведенный на максимальную температуру приточного воздуха приводит к тому, что нормальная работа будет только при диапазоне наружных температур от расчетной и выше. А если температура снаружи ниже расчетной – будет неполное кипение фреона в испарителе и возврат жидкого хладагента на всасывание компрессора.

Copyright © 2011-2018 Оптовые поставки кондиционеров Mitsubishi Heavy Industries Ltd. Поставка кондиционеров оптом дилерам.

mrcynognathus

Не буду даже приводить пример для разъяснения своего определения (хотя хотел), потому как, по моему мнению, это запутает и уведет в сторону.

Сразу к делу – что главное мы можем взять из энтальпии? – отвечаю – энергию (или количество теплоты), которую нужно передать воздуху, чтобы нагреть его или отнять, чтобы его охладить (или осушить).

Например, у нас есть задача — посчитать какой мощности нам нужен калорифер, чтобы осенью или весной подать в помещение 1200 м3/ч нагретого до температуры плюс 20 градусов наружного воздуха. Расчетная температура наружного воздуха в переходный период – плюс 10 градусов при энтальпии 26,5 кДж/кг (по СП 60.13330.2012).

Задача решается легко. Для того чтобы решить такую простую задачку используя и-д диаграмму, нам необходимо ввести в уровень понимания единицы измерения некоторых физических величин:
1) Энтальпия – килоДжоуль/килограмм . То есть количество потенциальной энергии в одном килограмме воздуха. Здесь все просто – если энтальпия равна 20, то это означает, что в одном килограмме данного воздуха находится 20 килоджоулей потенциальной теплоты или 20000 джоулей.
2) Мощность калорифера – Ватты, но в то же время ватты можно разложить на Джоуль/секунда. То есть, сколько может выдать калорифер энергии за одну секунду. Чем больше энергии нам сможет выдать калорифер за секунду, тем он мощнее. И тут все просто.

Итак, берем I — d диаграмму и ставим на ней точку наружного воздуха. После, проводим прямую линию вверх (идет нагрев воздуха без изменения влагосодержания).

1_Страница_2

Мы получаем точку на j — d диаграмме с температурой плюс 20 градусов и энтальпией 36,5 кДж/кг. Возникает вопрос – что, же, черт возьми, нам дальше делать с этой гребанной информацией?! :)

Во первых, обратим внимание на то, что мы производили все операции с одним килограммом воздуха (это косвенно видно по единице измерения энтальпии кДж/кг).

Во вторых, у нас был килограмм воздуха с 26,5 кДж, а стал с 36,5 кДж потенциальной энергии. То есть килограмму воздуха сообщили 10 кДж для того чтобы его температура поднялась с плюс 10 градусов до плюс двадцати.

Дальше мы переведем 1200 м 3 /ч в кг/с(килограммы/секунда, т.к. на I d диаграмме используются эти единицы измерения ), умножив 1200 на 1,25 кг/м 3 (один метр кубический десятиградусного воздуха весит 1,25 килограмма), что даст нам 1500 кг/ч, а затем разделив на 3600 (обратите внимание на логику перевода между системами – делим мы на 3600 не потому что мы так зазубрили или запомнили, а потому что за секунду у нас воздуха пройдет меньше чем за час, меньше в 3600 раз) получаем итог 0,417 кг/с.

Идем дальше. Мы получили, что за одну секунду проходит 0,417 кг воздуха. И мы знаем, что каждому килограмму необходимо передать (сообщить) 10 кДж для того, чтобы нагреть его до температуры плюс 20 градусов. Сообщаем, умножая 0,417 кг/с на 10 кДж/кг, и получая 4,17 кДж/с (килограммы сократились) или 4170 Дж/с, что равно 4170 Вт (определено нами ранее по тексту). Вот мы и получили мощность нашего калорифера.

Кондиционирование

Охлаждение происходит по тому же принципу, но только немного сложнее из-за выделения влаги из воздуха.

Выделение влаги (конденсата) из воздуха происходит тогда, когда температура воздуха при охлаждении достигает точки росы на линии относительной влажности 100%. В предыдущей статье я описал этот процесс: http://mrcynognathus.livejournal.com/7641.html

Вроде бы, нет ничего сложного — охлаждаем воздух с температурой плюс 20 градусов и относительной влажностью 50% до плюс 12 градусов (как это обычно происходит в сплит-системах), проводя прямую вертикально вниз из точки 20-ти градусного воздуха до точки 12-ти градусного воздуха.

5

И что мы видим – никаких влаговыделений. Влагосодержание осталось на прежнем уровне – 8 г/кг. Но мы то знаем, что при работе кондиционера идет обильное влаговыделение (конденсат активно капает из дренажной трубки, выведенной на фасад здания) – этот факт подтверждается неоднократным наблюдением гуляющего по летним улицам.

Возникает вопрос – откуда же влага? Ответ: дело в том, что через внутренний блок кондиционера проходят медные трубки, которые охлаждаются хладагентом до температур, которые ниже плюс 12 градусов, и в связи с этим охлаждаемый воздух делится на слои с различной температурой, примерно как на рисунке ниже (предположим, что трубки охлаждаются до плюс 5 градусов). Сразу скажу, что это далекий от действительности, но показывающий общий смысл вышесказанных мною слов рисунок (прошу меня за него не ругать)

Поперечный разрез воздухоохладителя

Поэтому из того воздуха, который соприкасается с трубками(и оребрением) и выпадает влага. А тот воздух, что не успел охладиться до точки росы, или успел, но избежал контакта с охлажденной поверхностью, минует процесс влаговыделения и несет в себе столько же влаги, сколько он нес в себе до охлаждения (по сути).

Для того чтобы провести правильную прямую процесса охлаждения воздуха в таком охладителе (где температура хладагента ниже температуры точки росы), нам необходимо учесть каждый воздушный поток с различными тепловлажностными параметрами воздуха и найти на графике точки смешения всех этих потоков – что по моему мнению – не реально (у меня просто не хватит мозгов на это)! Но…

. Я пришел к вот такому решению (скорее всего не я такой один) — у нас есть температура входящего воздуха, есть температура хладагента и есть температура получаемого воздуха, и я считаю, что нам достаточно провести линию процесса охлаждения части воздуха до плюс 5 градусов и найти точку смешения 5-ти градусного воздуха и 20-ти градусного воздуха. То есть, я предполагаю, что проходя через внутренний блок кондиционера, воздух делится на два потока – тот, который охлаждается до плюс пяти градусов и выдает нам наибольшее количество влаги, и тот который вообще не охлаждается, а на выходе эти два потока смешиваются и образуют поток воздуха с температурой плюс 12 градусов и определенным влагосодержанием.

Читайте также  Чем отличается No Frost от Neo Frost

Я считаю, что для достижения тех целей, которые я преследую, результата, полученного при таком упрощении, вполне достаточно. А какие же цели я преследую?

Первая цель – это определение максимального влаговыделения для того, чтобы рассчитать систему конденсатоотвода (особенно актуально это при системах кондиционирования, в составе которых две и более охлаждающих установок)

Вторая цель – учесть количество холода, идущего на перевод воды из газообразного состояния в жидкое (на конденсацию влаги; так назывемая скрытая холодопроизводительность). Особенно актуально это при охлаждении (отведении тепла) во влажных помещениях. Например, нам необходимо отвести от определенного насоса 2 кВт тепла, которые он выделяет в помещение. Если мы не учтем, что помещение влажное (влажное, по каким либо причинам) и установим в помещение сплит-систему мощностью 2,5 кВт, то мы можем получить (при определенных условиях), что сплит-система тратит 1 кВт лишь для того, чтобы перевести пар во влагу, а на удаление теплоизбытков тратит оставшиеся 1,5 кВт, что меньше на 500 Вт необходимого, и что может привести к перегреву насоса и скорого его выхода из строя.

Итак, делим поток на два потока, один из которых охлаждаем до плюс пяти — отрезок 1-2, а другой оставляем не тронутым — точка 1.

1_Страница_1

1_Страница_3

1_Страница_4

Для того чтобы узнать количество конденсата, выпавшего на оребрении и трубках охладителя нам необходимо вычесть влагосодержание получившегося воздуха из влагосодержания необработанного воздуха 7,3 г/кг – 6,3 г/кг. В итоге мы получим, что из каждого килограмма прошедшего через охладитель воздуха выделится 1 грамм конденсата. Чтобы узнать расход конденсата, нам необходимо узнать, сколько килограммов воздуха проходит через теплообменник за определенное время. Например, если нам необходимо охладить 1400 м 3 /ч воздуха с температуры плюс 20 градусов с относительной влажностью 50% до температуры плюс 12 градусов, то мы переведем 1400 м 3 /ч в 1680 кг/ч и получим, что за час обработки воздуха выделится 1680 грамм конденсата (по одному грамму на каждый килограмм воздуха), что равно 0,47 г/с (грамм/секунда) и 0,47 * 10 -3 кг/с.

Полная холодопроизводительность находится так же, как мы искали теплопроизводительность калорифера ранее. Берем энтальпию начальной точки 28 кДж/кг, вычитаем из нее энтальпию конечной точки 38,5 кДж/кг, получая отрицательное число 10,5 кДж/кг (минус указывает на то, что энергия отдается хладагенту). Переводим 1680 кг/ч в килограмм/секунда, что будет равняться 0,47 кг/с. В итоге получаем 4,935 кДж/с, что равно 4,935 кВт мощности.

Подпишись на мой YouTube-канал FAN-tastiK — канал о проектировании Вентиляции, Кондиционирования и Отопления

Если есть необходимость определить скрытую холодопроизводительность , можно найти её, отталкиваясь от количества выделенного конденсата, используя удельную теплоту парообразования:
Теплота, требуемая для конденсации влаги, находится по формуле: Q = L * m ,
где L – удельная теплота парообразования; m – масса влаги.
L воды равно: 2260 кДж/кг.

Для того, чтобы перевести 0,47 грамма воды из газообразного состояния в жидкое состояние за секунду нам требуется 2260 Дж * 10 3 * 0,47 кг/с * 10 -3 = 1063 Дж/с, что равно 1063 Вт.

Итак скрытая холодопроизводительность данного процесса равна 1063 Вт.

Собственно, это все, что я хотел рассмотреть в данной статье. Прошу не бранить меня за наивную упрощенность описанного мною — я постарался объяснить в первую очередь себе — что такое энтальпия и как ей пользоваться. Надеюсь Вам было интересно и полезно. Спасибо за внимание.

Закладка трасс для кондиционеров. Нюансы монтажа.

Итак, вторую часть по монтажу кондиционеров решил посвятить методам укладки трасс во время ремонта.Вкратце об объекте. Таунхаус, 3 этажа, 5 сплит-систем Daikin. Медные трассы длиной от 5 до 15 метров.

Итак, вторую часть по монтажу кондиционеров решил посвятить методам укладки трасс во время ремонта.

Вкратце об объекте. Таунхаус, 3 этажа, 5 сплит-систем Daikin. Медные трассы длиной от 5 до 15 метров. Дренаж гибкий. Перегородки — пеноблок и кирпич вперемешку. Наружные стены дополнительно утеплены 50 мм пенополиэстеролом и облицованы плиточкой.

Первое с чего начинается монтаж — это предварительное согласование с заказчиком точного расположение внутренних и наружных блоков. Это один из важных этапов, так как заранее необходимо знать расположение мебели в будущем жилище. Поэтому желательно иметь дизайн-проект с окончательной расстановкой мебели. Важно выбрать место установки внутреннего блока так, чтобы он не дул в сторону постоянного пребывания людей, где располагаются кровати, диваны, кресла, рабочие места.

Сразу необходимо учитывать технические моменты: возможность слива конденсата с внутреннего блока, возможность прохода трасс от внутреннего блока до наружного. Ищутся все варианты избежания использования помпы, откачивающей конденсат из внутреннего блока( о помпах расскажу как-нибудь отдельно). После подбирается мощность кондиционеров, рассчитывается длина трасс. Подбирается кондиционер с учетом мощности и длины трассы. На этом этапе могут возникать особые требования по размещению наружного блока, но это уже все индивидуальные моменты.

Итак, после составления мини-проекта по расположению блоков, трасс и дренажей, мы приступаем к работе. Пример приведу на двух блоках, которые будут висеть над одним дверным проемом, но в разных комнатах.

Для начала мы рисуем внутренний блок( самые распространенные габариты — ширина 800,высота 300)

и рисуем будущую штробу под трассу и под дренаж. К сожалению, нарисованную штробу напарник быстрее выштробил, чем я успел сфотографировать)))

Фото в одной комнате-

фото:Закладка трасс для кондиционеров. Нюансы монтажа.

фото:Закладка трасс для кондиционеров. Нюансы монтажа.

Фото за стеной в другой комнате —

фото:Закладка трасс для кондиционеров. Нюансы монтажа.

Блоки центрируются по дверному проему.

Хочу обратить внимание на следующие нюансы на этом этапе.

1. При прорисовке надо учесть минимальную высоту от будущего потолка до верха кондиционера: 50мм — минимум, 100мм — хорошо, 150мм — отлично. Не забывайте также учитывать будущую лепнину!

Случаев очень-очень много, когда забывают учесть лепнину.

2. Расстояние от верха дверного проема до низа кондиционера. Бывают очень широкие наличники у дверей, соответственно 100 мм желательно отступить.

3. Трасса с медными трубами в 99% случаев должна заходить в кондиционер с левой стороны.

Редкое исключение, встречаемое мной, — у кондиционеров Midea.

4. Дренаж может входить в блок, как с левой стороны, так и с правой. Опять же исключение составляют 20% китайских кондиционеров.

5. Дренаж должен укладываться с непрерывным уклоном от внутреннего блока. Не должно быть горизонтальных участков, а так же участков с обратным уклоном.

6.По возможности, дренаж первые 15 см укладываем с сильным уклоном, т.к. 20% внутренних блоков в ходе стройки приходится опускать ниже( из-за лепнины, потолков и т.д.) И дабы не перекладывать весь дренаж, выштрабливается эти 15см и укладываются с меньшим уклоном.

7. Блок рисуется для того, чтобы понять будущие габариты блока. И трассы вывести под них так, чтобы они скрылись под блоком.

8. В зоне будущего внутреннего блока исключить прохождение труб, проводов и т.д. Так как потом будет крепиться блок, и возможно повреждение. Именно поэтому трассы мы выводим за пределы.

Далее мы режем штробы болгаркой, и выбиваем перфоратором. Штроборез штука бесполезная в этом деле, жутко неудобная.

Готовые штробы выглядят так —

фото:Закладка трасс для кондиционеров. Нюансы монтажа.

Сверлим отверстие на улицу

фото:Закладка трасс для кондиционеров. Нюансы монтажа.

По возможности аккуратно сверлим выходное отверстие на улице

фото:Закладка трасс для кондиционеров. Нюансы монтажа.

Приступаем к сборке трасс.

Под понятием трасса обычно подразумеваются две трубы в утеплителе и кабель для связи блоков между собой.

фото:Закладка трасс для кондиционеров. Нюансы монтажа.

Выбор диаметров трасс задается производителем. Для блоков небольшой мощности это 1/4(6мм) и 3/8(10мм). Также возможны трассы с использованием труб 12мм, 15мм, 19мм. Диаметры большего размера используются для промышленных систем.

Сборка трассы идет в таком порядке:

1. Раскатка трассы. Важный момент — на трубу нельзя наступать, иначе образуется залом, его необходимо будет исправлять.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: