Испытание воздуховодов на герметичность

Испытание воздуховодов на герметичность

Инженерные сети зданий и сооружений внутренние

ИСПЫТАНИЕ И НАЛАДКА СИСТЕМ ВЕНТИЛЯЦИИ И КОНДИЦИОНИРОВАНИЯ ВОЗДУХА

Правила проведения и контроль выполнения работ

Internal buildings and structures utilities. Testing and adjusting the ventilation systems and air-conditioning. Rules of carrying out and control of performance of works

Дата введения 2018-02-01

Предисловие

Цели, основные принципы и основной порядок проведения работ по межгосударственной стандартизации установлены в ГОСТ 1.0-2015 "Межгосударственная система стандартизации. Основные положения" и ГОСТ 1.2-2015 "Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены"

Сведения о стандарте

1 РАЗРАБОТАН Закрытым акционерным обществом "ИСЗС-Консалт" (ЗАО "ИСЗС-Консалт"), Техническим комитетом по стандартизации ТК 400 "Производство работ в строительстве, типовые технологические, организационные процессы"

2 ВНЕСЕН Федеральным агентством по техническому регулированию и метрологии (Росстандарт)

3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 30 июня 2017 г. N 100-П)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004-97

Сокращенное наименование национального органа по стандартизации

Минэкономики Республики Армения

Госстандарт Республики Беларусь

Госстандарт Республики Казахстан

4 Приказом Федерального агентства по техническому регулированию и метрологии от 16 января 2018 г. N 4-ст межгосударственный стандарт ГОСТ 34060-2017 введен в действие в качестве национального стандарта Российской Федерации с 1 февраля 2018 г.

5 ВВЕДЕН ВПЕРВЫЕ

Информация об изменениях к настоящему стандарту публикуется в ежегодном информационном указателе "Национальные стандарты", а текст изменений и поправок — в ежемесячном информационном указателе "Национальные стандарты". В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячном информационном указателе "Национальные стандарты". Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru)

1 Область применения

1.1 Настоящий стандарт устанавливает порядок выполнения работ по испытанию и наладке систем вентиляции и кондиционирования воздуха (в том числе систем воздушного отопления, технологической вентиляции и противодымной защиты) на весь период функционирования систем, включая пусконаладочные работы на вводимых в эксплуатацию, строящихся, реконструируемых, расширяемых и технически перевооружаемых предприятиях, зданиях и сооружениях.

1.2 Настоящий стандарт предназначен для применения при строительстве, реконструкции, ремонте, обслуживании и утилизации систем вентиляции и кондиционирования воздуха зданий и сооружений, кроме систем сооружений гражданской обороны и помещений, предназначенных для работы с радиоактивными и взрывчатыми веществами.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие межгосударственные стандарты:

ГОСТ 8.271-77 Государственная система обеспечения единства измерений. Средства измерения давления. Термины и определения

ГОСТ 12.1.005-88 Система стандартов безопасности труда. Общие санитарно-гигиенические требования к воздуху рабочей зоны

ГОСТ 12.1.007-76 Система стандартов безопасности труда. Вредные вещества. Классификация и общие требования безопасности

ГОСТ 12.1.012-2004 Система стандартов безопасности труда. Вибрационная безопасность. Общие требования

ГОСТ 12.3.018-79 Система стандартов безопасности труда. Системы вентиляционные. Методы аэродинамических испытаний

ГОСТ 21.602-2003 Система проектной документации для строительства. Правила выполнения рабочей документации отопления, вентиляции и кондиционирования

ГОСТ 2405-88 Манометры, вакуумметры, мановакуумметры, напоромеры, тягомеры и тягонапоромеры. Общие технические условия

ГОСТ 6376-74 Анемометры ручные со счетным механизмом. Технические условия

ГОСТ 7502-98 Рулетки измерительные металлические. Технические условия

ГОСТ ИСО 8041-2006 Вибрация. Воздействие вибрации на человека. Средства измерений

ГОСТ 15807-93 Манометры скважинные. Общие технические требования и методы испытаний

ГОСТ 16519-2006 (ИСО 20643:2005) Вибрация. Определение параметров вибрационной характеристики ручных машин и машин с ручным управлением. Общие требования

ГОСТ 16844-93 Вибрация. Требования к испытаниям механических молотков

ГОСТ 17168-82 Фильтры электронные октавные и третьоктавные. Общие технические требования и методы испытаний

ГОСТ 17187-2010 (IEC 61672-1:2002) Шумомеры. Часть 1. Технические требования

ГОСТ 18140-84 Манометры дифференциальные ГСП. Общие технические условия

ГОСТ 21339-82 Тахометры. Общие технические условия

ГОСТ 22270-76 Оборудование для кондиционирования воздуха, вентиляции и отопления. Термины и определения

ГОСТ 23337-2014 Шум. Методы измерения шума на селитебной территории и в помещениях жилых и общественных зданий

ГОСТ 28243-96 Пирометры. Общие технические требования

ГОСТ 28498-90 Термометры жидкостные стеклянные. Общие технические требования. Методы испытаний

ГОСТ 30494-2011 Здания жилые и общественные. Параметры микроклимата в помещениях

ГОСТ 32548-2013 Вентиляция зданий. Воздухораспределительные устройства. Общие технические условия

Примечание — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю "Национальные стандарты", который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя "Национальные стандарты" за текущий год. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться заменяющим (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Термины и определения

В настоящем стандарте применены термины по ГОСТ 8.271, ГОСТ 22270, ГОСТ 32548, а также следующие термины с соответствующими определениями:

3.1 вентиляция: Обмен воздуха в помещениях для удаления избытка теплоты, влаги, вредных и других веществ с целью обеспечения допустимого микроклимата и качества воздуха в обслуживаемой или рабочей зоне.

3.2 вентиляция вытяжная общеобменная: Вентиляция, осуществляющая удаление загрязненного воздуха из всего объема помещения.

3.3 вентиляция естественная (аэрация): Вентиляция, осуществляемая под действием разности удельных весов (температур) наружного и внутреннего воздуха, под влиянием ветра или совместным их действием, а также под действием комплекса технических средств, реализующих воздухообмен.

3.4 вентиляция местная: Вентиляция, осуществляемая вытяжной или приточной механической системой, предотвращающая распространение вредных веществ по объему помещения.

3.5 вентиляция механическая: Вентиляция, осуществляемая при помощи специальных побудителей тяги (вентиляторов, компрессоров, насосов, эжекторов, а также комплексов технических средств, реализующих такой воздухообмен).

3.6 вентиляция приточная общеобменная: Вентиляция, осуществляемая механической системой подачи воздуха в помещение.

3.7 воздухораспределитель (воздухораздающее устройство): Устройство, предназначенное для формирования приточной струи с целью обеспечения требуемых параметров воздушной среды в рабочей зоне.

3.8 вредные вещества: Вещества, для которых гигиеническими нормативами установлена предельно допустимая концентрация (ПДК).

3.9 дефлектор: Устройство, устанавливаемое с оголовком специальной формы, создающее дополнительное разряжение воздуха за счет ветрового напора.

3.10 душирующее утройство*: Устройство, создающее организованный поток приточного воздуха, направленный на рабочее место.

* Текст документа соответствует оригиналу. — Примечание изготовителя базы данных.

3.11 живое сечение: Свободная площадь проема вентиляционной решетки для прохода воздуха.

3.12 испытание: Определение фактических величин основных характеристик систем вентиляции и кондиционирования воздуха, оборудования или устройств в рабочем режиме.

3.13 комплексная наладка: Опробование всех систем вентиляции и кондиционирования воздуха здания при их одновременной работе с сопутствующими системами в автоматическом режиме с целью достижения соответствия фактических данных параметрам проектной документации.

3.14 кондиционирование воздуха: Автоматическое поддержание в закрытых помещениях всех или отдельных параметров воздуха (температуры, относительной влажности, чистоты, скорости движения) с целью обеспечения, как правило, оптимальных метеорологических условий, наиболее благоприятных для самочувствия людей, ведения технологического процесса, обеспечения сохранности ценностей, а также комплекс технических средств, обеспечивающих указанный процесс.

3.15 кратность воздухообмена: Отношение часового объема удаляемого или подаваемого воздуха к строительному объему помещения.

3.16 местный отсос: Устройство для улавливания вредных и взрывоопасных газов, пыли, аэрозолей и паров (зонт, бортовой отсос, вытяжной шкаф, кожух-воздухоприемник и т.п.) у мест их образования (станок, аппарат, ванна, рабочий стол, камера, шкаф и т.п.), присоединяемое к воздуховодам систем местных отсосов и являющееся, как правило, составной частью технологического оборудования.

3.17 наладка (испытание и регулировка): Комплекс работ, выполняемый с целью достижения работоспособности систем на соответствие параметрам проектной документации или технологическим требованиям в процессе эксплуатации систем.

3.18 наладка систем вентиляции и кондиционирования воздуха на санитарно-гигиенический эффект и/или технологические условия воздушной среды: Испытание и регулировка систем вентиляции и кондиционирования воздуха при их одновременной работе в автоматическом режиме при полной технологической нагрузке для обеспечения санитарно-гигиенических параметров микроклимата в помещениях и/или на рабочих местах, а также для поддержания технологических условий воздушной среды в производственных помещениях.

3.19 наладочная организация: Юридическое лицо или индивидуальный предприниматель, имеющий свидетельство о допуске на выполнение работ по наладке систем вентиляции и кондиционирования воздуха.

3.20 подпор (разрежение): Избыточное (недостаточное) по сравнению с соседними помещениями или атмосферой давление воздуха в производственном помещении, создаваемое средствами вентиляции путем превышения объема притока над вытяжкой (превышения вытяжки над притоком).

3.21 подсос: Процесс поступления воздуха через неплотности на всасывающей части воздуховодов.

3.22 пусконаладочные работы (пусконаладка): Комплекс работ, выполняемый после завершения монтажа систем на этапе ввода в эксплуатацию с целью обеспечения соответствия работы оборудования и устройств систем параметрам, заданным в проектной и рабочей документации.

Какие классы герметичности воздуховодов существуют?

Эффективность работы вентиляционных и газовоздушных систем определяется классом герметичности воздуховодов согласно СНиП 3.05.01-85. Точное соблюдение требований к монтажу и проведение испытаний необходимо для достижения расчётных характеристик, исключения поломок и снижения КПД.

Класс воздуховода

Технические характеристики

При монтаже систем вентиляции важно учитывать параметры применяемых каналов, которые влияют на их производительность, пропускную способность, нагрузку на несущие конструкции и прочностные свойства. Поэтому нужно учитывать основные технические характеристики вентиляционных воздуховодов:

  • форма поперечного сечения — круг или прямоугольник;
  • типы соединительных швов — фальцевый или сварной;
  • основные направления стыковки воздуховодов — по спирали или прямое;
  • предельно допустимая температура эксплуатации оцинкованных каналов до +80 0 С, а из жаростойкой стали — до +500 0 С;
  • классы выпускаемых воздуховодов по уровню герметизации согласно отечественным стандартам — нормальные (Н) и плотные (П);
  • классы герметичности по европейским стандартам — А, В, С;
  • по типу огнестойкости — с фольгированной защитой, с нанесёнными защитными слоями, комбинированные;
  • диаметры от 100 до 1250 мм;
  • длина каналов от 3 до 25 м.

Толщина используемого оцинкованного листа согласно ГОСТ 14918-80 составляет от 0,5 до 1,25 мм, при условии прогонки воздуха с влажностью до 60%. При производстве воздуховодов с целью обеспечения их достаточной прочности и жёсткости конструкции толщина стали определяется в зависимости от диаметра:

  • диаметр от 80 до 315 мм — толщина 0,5 мм;
  • от 355 до 800 мм — 0,7 мм;
  • от 900 до 1250 мм — 0,9 мм;
  • от 1400 до 1600 мм — 1,2 мм.

Для чего нужен контроль герметичности

Контроль герметичности воздуховодов позволяет определить качество систем вентиляции. Именно он позволяет определить КПД, снизить риск поломок различных конструктивных элементов, а также избежать снижения рабочего давления.

Для контроля воздуховодов класса плотные или нормальные необходимо привлекать специализированные организации, занимающиеся данной деятельностью. Независимая от строительной компании экспертная оценка позволит определить наличие несоответствие требованиям действующих стандартов.

Основные факторы, определяющие необходимость контроля:

  1. Снижение показателей санитарных норм и требований, в результате которых может не только ухудшаться отведение продуктов сгорания газа, но и потребоваться частичный или полный ремонт вентиляционных каналов из-за последствий нарушения их герметизации.
  2. Негерметичные стыки существенно ухудшают вентиляцию помещений и повышают расходы на её работу и эксплуатацию, так как для обеспечения необходимых показателей приходится повышать мощность оборудования.
  3. Наличие даже небольших неплотных стыков вентиляционных каналов может стать причиной появления конденсата на внутренних поверхностях, который способен вызвать поломки дорогого оборудования и системы.
Читайте также  Приточная вентиляция в квартире

Классы герметичности

Согласно Европейской стандартизации выделяется три основных класса герметичности воздуховодов: A, B, C. Каждый из них определяет допустимые потери транспортируемого воздуха на единицу длины канала. Оптимальным давлением считается 400 Па.

Российские нормы СНиП 41-01-2003 выделяют два класса герметичности: плотный и нормальный. В настоящее время действует стандарт СП 60.13330.2012 аналогичный Eurovent 2.2, согласно которому введено четыре класса плотности: A, B, C, D.

Класс А

Данный класс является самым низким, поэтому воздуховоды данного типа используются на непроизводственных объектах с минимальным уровнем пожароопасности. Допустимые утечки составляют не более 1,35 л/с на погонный метр. Применяются воздуховоды из оцинкованной стали, которые соединяются без применения герметика.

Класс В

Средний класс герметичности используется при монтаже систем в жилых и производственных помещениях с повышенными требованиями к вентиляции. Обеспечиваемый уровень протечек до 0,45 л/с/м.

Воздуховод на производстве

Воздуховод в производственных помещениях

Класс С

Высший класс герметичности с уровнем воздухопроницаемости до 0,15 л/с/м ориентирован на монтаж вентиляционных систем в помещениях с повышенной взрыво- или пожароопасностью.

Как проверить герметичность воздуховодов

Испытания воздуховодов на герметичность реализуются по принципу учёта потерь на конечных подключённых устройствах, таких как решётки или диффузоры. Допустимые отклонения от расчётных, проведённых в соответствии со СНиП 41.01.2003, не должны отличаться более, чем на 8%, а согласно СП 60.13330.2012 — более 6%.

Способы аэродинамических испытаний сводятся к замеру расхода на конечных точках, а не всей системы в целом. Связано это с достаточно пространными требованиями, описанными в стандартизационной и нормативной документациях. Для измерений обычно применяют анемометры, которые располагают в плоскости сечения воздуховода или выходного отверстия.

Измерения на участках труб проводят с помощью установленных заглушек и вентилятора с известными параметрами и характеристиками с одной стороны, в местах стыков —микроманометров, а на другом конце — заглушки. По изменению показателей давлени определяют утечки и класс герметизации.

Стык воздуховода

Классы плотности

Все вентиляционные и дымоотводящие системы характеризуются следующими классами плотности воздуховодов:

  • плотные (П);
  • нормальные (Н).

Плотные воздуховоды характеризуются повышенной герметичностью соединительных стыков, при монтаже которых обязательно используется герметик и плотный прочный замок. Их допускается использовать для мощного насосного оборудования с рабочим давлением от 1,4 кПа. Они применяются в помещениях следующих типов:

  1. Категории А — с наличием горючих газов и воспламеняющихся жидкостей при температуре вспышки до +28 0 С, при которой возникает избыточное давление выше 5 кПа.
  2. Категории Б — наличие в воздухе горючих волокон и пыли, температура вспышки которых не превышает +28 0 С, а давление при взрыве от 5 кПа.

Класс Н из оцинкованной стали наиболее распространён при монтаже вентиляционных систем в жилых домах, офисных и административных помещениях, а также на складах с уровнем пожароопасности «Г» либо «В».

Основное отличие нормальных от плотных соединений заключается в сниженных требованиях к герметичности стыков, а также в допустимости применения резиновых уплотнителей, а не только силиконовой смазки.

Производство воздуховодов

Технология изготовления воздуховодов может быть реализована путём сварки и пайки тонколистовой стали либо с применением механических замков. Первый способ является достаточно сложным и трудоёмким, но позволяет получить высокий уровень герметичности швов, а второй — отличается высоким расходом металла и худшими показателями плотности стыков.

Прямоугольные воздуховоды изготавливают в такой последовательности:

  1. Выполняется раскройка листа по заранее подготовленной развёртке.
  2. На гибочном станке придаётся необходимая форма.
  3. Выполняется стыковка швов и формируется сварной или фальцевый шов.

Круглые воздухоотводы производят следующими способами:

  • аналогично прямоугольным на вальцовочных станках из тонких листов;
  • на навивных станках из металлической ленты.

Навивной способ производства позволяет создавать вентиляционные каналы нестандартной длины, что при монтаже систем помогает снизить количество соединительных стыков и повысить эффективность работы.

Что означает класс герметичности воздуховодов и в чем разница между А, B, П и Н разновидностями?

Человек не может не дышать. В частных домах и квартирах воздухообмен чаще всего обеспечивают вентиляционные короба на кухне и в санузлах; в общественных и производственных зданиях системы вентиляции существуют в обязательном порядке – с принудительной и естественной вентиляцией.

Мы приветствуем нашего уважаемого читателя и предлагаем его вниманию статью о том, что такое класс герметичности воздуховодов и почему герметичность так важна.

Что это такое?

Вентиляция – процесс удаления или замены загрязненного воздуха в помещении и обеспечение в нем необходимых санитарно-гигиенических условий и создание в нем комфортного для человека микроклимата. Герметичность воздуховодов – воздухонепроницаемость коробов вентиляции. Именно герметичность обеспечивает качественную работы системы вентиляции и предохраняет вентилируемые здания от возникновения опасных ситуаций.

Для чего нужен контроль герметичности

У приточной и вытяжной вентиляции при недостаточной герметичности падает производительность; вытяжная будет недостаточно эффективно удалять отработанный воздух, вредные и опасные вещества из рабочей зоны, что создает дискомфорт или опасность для здоровья человека. Кроме того, эти самые вредные и опасные вещества могут попадать в смежные помещения, по которым проходят трубопроводы.

При пожаре возможно попадание дыма и раскаленных газов в смежные помещения, что может создать дополнительные очаги возгорания и задымление помещений. При прохождении воздуховодов с теплыми газами через неотапливаемые помещения возможно выпадение конденсата и даже просачивание его в эти помещения. Неплотные воздуховоды требуют необоснованного увеличения мощности оборудования.

Поэтому контроль герметичности конструкций является очень важной составляющей контроля качества изготовления системы вентиляции.

Классификация воздуховодов по герметичности

При классификации воздуховодов используют и отечественные и европейские нормативы.

Европейские стандарты

В соответствии с европейскими нормативами по герметичности (воздухонепроницаемости) воздуховоды подразделяются на классы А,В,С.

Класс воздуховодов с самой низкой герметичностью – класс А. При давлении проходящего по трубам воздуха в 400 Па допустимые потери не должны составлять более 1,35 л/сек/м.

У воздуховодов класса В допустимые потери при давлении 400 Па не должны составлять более 0,45 л/сек/м.

Более высокая воздухонепроницаемость у систем класса С — потери при давлении 400 Па не должны составлять более 0,15 л/сек/м.

Российские нормативы

Воздуховоды подразделяются по плотности:

  • Класс П — плотные.
  • Класс Н — нормальные.

Воздуховоды класса П применяются:

  • В системах, оборудованных мощными вентиляторами, создающими давление не менее 1,4 МПа.
  • В системах, обслуживающих помещения категорий А и Б по пожаробезопасности (то есть в помещениях, относящихся к категории пожаро- и взрывоопасных).

Такие трубопроводы в обязательном порядке имеют замок в месте стыка двух секций, при монтаже обязательно применение уплотняющих материалов или герметика. Помимо общеобменной вентиляции и местных отсосов на вредных и опасных производствах, такой класс систем используется в системах дымоудаления.

Воздуховоды класса Н применяются для систем общеобменной и местной вентиляции в условиях, в которых не требуется удалять вредные продукты производства и к которым не предъявляются столь строгие требования к герметичности конструкций из оцинкованной стали и допускаются незначительные утечки. Сюда обычно входят все общеобменные системы удаления воздуха из жилых, общественных, офисных и большинства производственных помещений.

Как проверить герметичность воздуховодов

Определить степень герметизации воздуховодов без проверки невозможно. Такие проверки обязательно проводят при монтаже систем вентиляции:

  • Требующих высокой герметичности воздуховодов из оцинковки, особенно в пожаро- и взрывоопасных помещениях;
  • При скрытой прокладке вентиляционных коробов (скрытых за конструкциями, фальшстенами, иногда оборудованием, закрытых теплоизоляцией);
  • При сооружении уникальных объектов с массовым пребыванием людей, экспериментальных производств и объектов.

Самый простой способ проверки – визуальный осмотр системы, сверка соответствия конструкций чертежам, правильности монтажа и наличия уплотнений (или неплотностей, видимых визуально).

Более тщательная проверка проводится при помощи временно подсоединенного переносного вентилятора достаточной для проверки мощности. Закрывают все отверстия в коробах заглушками (и для притока, и для забора воздуха, и в местах неприсоединенных ответвлений). Проводят задымление воздуха и с помощью переносного вентилятора нагнетают задымленный воздух в вентсистему. Выявляют все места протечек визуально, инструментально измеряют расход воздуха и статическое давление в испытуемой системе.

Предварительно переносной вентилятор с присоединительным воздуховодом заглушают, включают вентилятор и также измеряют давление и расход воздуха через неплотности. Затем находят разницу расхода переносной вентсистемы и объединенных переносной и испытываемой вентсистем – и получают величину утечки.

Замеры производят несколько раз при различных давлениях в системе. Несколько значений давлений получают при частичном перекрытии всасывающего отверстия переносного вентилятора.

Полученные данные пересчитывают, и при недопустимых утечках дополнительно герметизируют стыки отдельных секций и других элементов системы. Испытание системы на герметичность проводят только квалифицированные специалисты с соответствующим оборудованием.

Как происходит процесс герметизации

Для выполнения герметизации отдельных квадратных и прямоугольных секций с фланцевыми (наиболее часто встречающимися) соединениями применяют прокладки или специальные составы. Фланцы скручивают болтами с гайками и зажимают прокладку.

Реже встречаются бандажные, муфтовые, ниппельные и раструбные соединения (обычно на круглых трубопроводах). Их обычно уплотняют специальными лентами и жидкими герметиками или невысыхающими мастиками.

Материалы для герметизации воздуховодов

Для герметизации фланцев применяют следующие виды уплотнителей:

  • Асбестовый шнур.
  • Хризолитовая нить.
  • Резина.
  • Картон из асбеста.
  • Акриловые мастики и герметики.
  • Огнеупорные мастики и герметики.
  • Термоуплотнительную ленту.
  • пластикат ПВХ.

Для всех прочих видов соединений применяют специальную ленту, мастику, герметики, иногда проклеивают стыки алюминиевым скотчем.

Для надежности всегда следует применять два вида герметиков – если один будет разрушаться – второй будет герметизировать стык.

Заключение

Мы прощаемся с нашим уважаемым читателем и надеемся, что наш краткий обзор по герметичности воздуховодов поможет ему разобраться в необходимости герметизации вентиляции, способах уплотнения и классификации воздухопроводов.

Читайте также  Приточная вентиляция в квартире с фильтрацией

Читайте наши материалы, делитесь интересной информацией с друзьями в соцсетях, приводите их на наш сайт.

Герметизация стыков воздуховодов вентиляции

Проверка воздуховода Класс воздуховода

По мимо этого, нужно учитывать все детали, выложенные в нормативной литературе. В таком случае, проектировщикам будут особенно полезны такие нормативные документы: СНиП 3.05.01 — 85 «ВНУТРЕННИЕ САНИТАРНО-ТЕХНИЧЕСКИЕ СИСТЕМЫ» и, конечно, СНиП 41-01-2010 «ОТОПЛЕНИЕ, ВЕНТИЛЯЦИЯ И КОНДИЦИОНИРОВАНИЕ», ГОСТ 12.3.018 — 79 .

Аэродинамические испытания воздуховодов

Перед началом испытаний на герметичность проводят визуальный осмотр испытуемого участка. В случае, если были выявлены какие-либо дефекты, испытания не проводят до полного их устранения.

Далее, проводят расчет значения допустимых отклонений давления на участке воздуховода.

После этого, подсоединяют мобильный вентилятор к участку вентиляционной сети, который подлежит испытанию. В этот момент контролируют установку заглушек для отсечения испытуемого участка от всей системы. Также проверяют наличие измерительных приборов на участке.

По окончании этих мероприятий, включают вентилятор. При этом производят замеры давления (статического) в нагнетательном и испытуемом участках. К тому же, производят замер расхода воздуха. Замеры вышеперечисленных параметров производят через вентиляционные лючки .

Зная величины утечек и показатели давления, определяют фактический показатель утечки, либо подсоса.

Полагаясь на полученные данные, производят их сравнение с допустимой величиной утечки по таблице СНиПа 41-01-2010 .

После выполнения всех перечисленных выше работ составляется заключение в протоколе испытания на герметичность.

Контроль качества работ по герметизации воздуховодов

1.52. Проверка качества работ по герметизации соединений воздуховодов включает в себя пооперационный контроль: качества изготовления соединительных частей (фланцев, бандажей, реек и т.п.), соблюдения соосности и параллельности торцов соединяемых частей, правильности укладки уплотнительных материалов, равномерности затяжки болтов, соответствия сортамента и качества применяемых герметизирующих материалов, срока их годности, качества подготовки металлических поверхностей к нанесению уплотнительных материалов и др.

Очистка поверхности металла перед герметизацией

Результаты испытания воздуховодов

В зависимости от результатов сравнения нормированных значений и фактических, определяют герметичен воздуховод или — нет.

Если фактические значения превышают нормы по СНиПу, тогда необходимо выявить места утечек. Делают это либо визуальным способом, либо методом задымления участка воздуховода.

После устранения неплотностей испытание повторяют.

Пример формы акта испытания

Производство работ по герметизации бандажных соединений круглых воздуховодов

1.12. Наиболее широкое применение для круглых воздуховодов имеют бандажи СТД 527А и СТД 134А, изготовляемые по ТУ 36-2050-77. Бандажи СТД 527А предназначены для соединения воздуховодов диаметром 100-180 мм включительно, бандажи СТД 134А — для воздуховодов диаметром 200-900 мм включительно. Бандажи изготовляют из стальной ленты 0,8 КП-М-НТЗ-С по ГОСТ 503-81 толщиной 0,8-1,5 мм и покрывают грунтовкой ГФ-021 по ГОСТ 25129-82. Продольные и спиральные фланцевые швы воздуховодов должны быть закреплены на торцах (в местах расположения бандажей) точечной сваркой.

1.13. Бандажи устанавливают на отбортовку соединяемых воздуховодов.

1.14. Бандажи не должны иметь искривлений, вмятин, поперечных и продольных трещин и других дефектов, снижающих их эксплуатационные качества.

1.15. Для обеспечения герметичности соединения бандажи с внутренней стороны заполняют герметизирующей мастикой «Бутэпрол».

1.16. Герметизирующая нетвердеющая мастика «Бутэпрол» выпускается промышленностью по ТУ-21-29-45-76 и представляет собой однородную массу, изготовляемую на основе бутилкаучука, этиленпропиленового каучука, наполнителей и пластификаторов. Мастика поставляется в упакованных в полиэтиленовую пленку брикетах массой 1,5-2 кг. Срок хранения — 1 год со дня изготовления.

1.17. При нанесении мастику необходимо нагреть для придания ей вязких свойств (до 50 °С). Нагрев герметика и заполнение им бандажа выполняют с помощью механизма СТД 449 (ТУ 36 2416-81).

1.18. Мастика сохраняет свои герметизирующие свойства при температуре от -50 до +70 °С.

1.19. Бандажи с предварительно нанесенной мастикой «Бутэпрол» должны быть использованы в срок, не превышающий 12 мес.

Расход мастики на одно бандажное соединение в зависимости от диаметра воздуховода приведен в приложении 2 .

Заключительная часть

После проведения испытаний воздуховода оформляют акт на скрытые работы, а также протокол испытаний.

СНиП 3.05.01-85 ________________ Зарегистрирован Росстандартом в качестве СП 73.13330.2011 . — Примечание изготовителя базы данных.

СТРОИТЕЛЬНЫЕ НОРМЫ И ПРАВИЛА

ВНУТРЕННИЕ САНИТАРНО-ТЕХНИЧЕСКИЕ СИСТЕМЫ

____________________________________________________________________ Текст Сравнения СНиП 3.05.01-85 с СП 73.13330.2012 см. по ссылке. — Примечание изготовителя базы данных. ____________________________________________________________________

Дата введения 1986-07-01

РАЗРАБОТАНЫ Государственным проектным институтом Проектпромвентиляция и Всесоюзным научно-исследовательским институтом гидромеханизации, санитарно-технических и специальных строительных работ (ВНИИГС) Минмонтажспецстроя СССР (канд. техн. наук П.А.Овчинников — руководитель темы; Е.Н.Зарецкий, Л.Г.Суханова, В.С.Нефедова; кандидаты техн.наук А.Г.Яшкуль, Г.С.Шкаликов).

ВНЕСЕНЫ Минмонтажспецстроем СССР.

ПОДГОТОВЛЕНЫ К УТВЕРЖДЕНИЮ Главтехнормированием Госстроя СССР (Н.А. Шишов).

УТВЕРЖДЕНЫ постановлением Государственного комитета СССР по делам строительства от 13 декабря 1985 г. N 224.

С введением в действие СНиП 3.05.01-85 «Внутренние санитарно-технические системы» утрачивает силу СНиП III-28-75 «Санитарно-техническое оборудование зданий и сооружений».

ВНЕСЕНО Изменение N 1, утвержденное постановлением Госстроя России от 24.02.00 № 17, введенное в действие с 01.07.00 и опубликованное в БСТ N 4, 2000 г.

Изменение внесено изготовителем базы данных по тексту БСТ N 4, 2000 г.

ОБЩИЕ ПОЛОЖЕНИЯ

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Монтаж внутренних санитарно-технических систем следует производить в соответствии с требованиями настоящих правил, СН 478-80, а также СНиП 3.01.01-85, СНиП III-4-80, СНиП III-3-81, стандартов, технических условий и инструкций заводов — изготовителей оборудования.

При монтаже и изготовлении узлов и деталей систем отопления и трубопроводов к вентиляционным установкам (далее — «теплоснабжения») с температурой воды выше 388 К (115°С) и паром с рабочим давлением более 0,07 МПа (0,7 кгс/кв.см) следует также выполнять Правила устройства и безопасной эксплуатации трубопроводов пара и горячей воды, утвержденные Госгортехнадзором СССР.

1.2. Монтаж внутренних санитарно-технических систем и котельных необходимо выполнять индустриальными методами из узлов трубопроводов, воздуховодов и оборудования, поставляемых комплектно крупными блоками.

При монтаже покрытий промышленных зданий из крупных блоков вентиляционные и другие санитарно-технические системы следует монтировать в блоках до установки их в проектное положение.

Монтаж санитарно-технических систем следует производить при строительной готовности объекта (захватки) в объеме:

для промышленных зданий — все здание при объеме до 5000 куб.м и часть здания при объеме свыше 5000 куб.м, включающая по признаку расположения отдельное производственное помещение, цех, пролет и т. д. или комплекс устройств (в том числе внутренние водостоки, тепловой пункт, систему вентиляции, один или несколько кондиционеров и т. д.) ;

для жилых и общественных зданий до пяти этажей — отдельное здание, одна или несколько секций; свыше пяти этажей — 5 этажей одной или нескольких секций.

1.3. До начала монтажа внутренних санитарно-технических систем генеральным подрядчиком должны быть выполнены следующие работы:

монтаж междуэтажных перекрытий, стен и перегородок, на которые будет устанавливаться санитарно-техническое оборудование;

устройство фундаментов или площадок для установки котлов, водоподогревателей, насосов, вентиляторов, кондиционеров, дымососов, калориферов и другого санитарно-технического оборудования;

возведение строительных конструкций вентиляционных камер приточных систем;

устройство гидроизоляции в местах установки кондиционеров, приточных вентиляционных камер, мокрых фильтров;

устройство траншей для выпусков канализации до первых от здания колодцев и колодцев с лотками, а также прокладка вводов наружных коммуникаций санитарно-технических систем в здание;

устройство полов (или соответствующей подготовки) в местах установки отопительных приборов на подставках и вентиляторов, устанавливаемых на пружинных виброизоляторах, а также «плавающих» оснований для установки вентиляционного оборудования;

устройство опор для установки крышных вентиляторов, выхлопных шахт и дефлекторов на покрытиях зданий, а также опор под трубопроводы, прокладываемые в подпольных каналах и технических подпольях;

подготовка отверстий, борозд, ниш и гнезд в фундаментах, стенах, перегородках, перекрытиях и покрытиях, необходимых для прокладки трубопроводов и воздуховодов;

нанесение на внутренних и наружных стенах всех помещений вспомогательных отметок, равных проектным отметкам чистого пола плюс 500 мм;

установка оконных коробок, а в жилых и общественных зданиях — подоконных досок;

оштукатуривание (или облицовка) поверхностей стен и ниш в местах установки санитарных и отопительных приборов, прокладки трубопроводов и воздуховодов, а также оштукатуривание поверхности борозд для скрытой прокладки трубопроводов в наружных стенах;

подготовка монтажных проемов в стенах и перекрытиях для подачи крупногабаритного оборудования и воздуховодов;

установка в соответствии с рабочей документацией закладных деталей в строительных конструкциях для крепления оборудования, воздуховодов и трубопроводов;

Производство работ по герметизации реечных соединений воздуховодов прямоугольного сечения

1.20. Бесфланцевые соединения металлических воздуховодов прямоугольного сечения из унифицированных деталей, изготовляемых по ТУ 36-736-78 в соответствии с ВСН 353-75, выполняют с помощью шин и реек, изготовляемых по ТУ 36-2314-80.

Примечание. Реечные соединения участков воздуховодов прямоугольного сечения могут быть выполнены с применением реек других конструкций ( Z

и С-образной формы), а также без шин. В последнем случае рейки устанавливают на отбортованные концы воздуховодов.

1.21. Шины и рейки изготовляются в заводских условиях и на монтажную площадку поставляются партиями по заданным размерам. Шины могут быть поставлены также установленными на воздуховодах и закрепленными любым способом (защелочное соединение, прихватка сваркой, соединение на заклепках или самонарезающих винтах и др.).

1.22. Для герметизации реечных соединений применяют профилированную резиновую прокладку Т-образной формы, изготовляемую из резины по ТУ 38-105259-71. Резиновую прокладку устанавливают в ручье шин (приложение 3 ,а).

1.23. Сборку участков воздуховодов в укрупненные блоки производят при предварительно установленных резиновых прокладках в ручье шин. Совмещение шин между собой и обеспечение соосности соединяемых воздуховодов выполняют с помощью оправки, вставляемой в отверстие монтажных угольников. Затем шины на одной из сторон стягивают фиксаторными клещами и на них на длину 10-15 мм надвигают рейку, после чего легкими ударами молотка через деревянную прокладку рейку забивают на всю длину. Соединительные рейки устанавливают сначала на вертикальных сторонах воздуховодов, а затем горизонтальных. При этом обеспечивается плотное прижатие резиновых прокладок между собой и герметичность соединения.

1.24. При установке реек на отбортованные концы воздуховодов профилированную резиновую прокладку устанавливают между торцами (приложение 3 ,б), после чего воздуховоды соединяют рейками, забиваемыми легкими ударами молотка.

1.25. При соединении прямоугольных воздуховодов с помощью Z

-и С-образных реек (без применения резиновых прокладок) в целях герметизации стык снаружи должен быть промазан густотертой краской или разогретой до 50 °С мастикой «Бутэпрол» (приложение 3 ,в).

Масляные и алкидные густотертые краски (ГОСТ 695-77) выпускаются нескольких марок: МА-021, МА-025, ГФ-023 и ПФ-024. Краски готовы к употреблению и поступают разведенными олифой до требуемой консистенции. Перед употреблением их необходимо перемешать до образования однородной массы. Краска наносится и уплотняется шпателем. Время высыхания готовой краски не более 12 ч. Расход краски составляет 0,008-0,010 кг на 1 м 2 воздуховода.

Читайте также  Вентиляция жилых зданий снип

1.26. Максимальная длина укрупненных блоков прямоугольных воздуховодов, монтируемых горизонтально и соединяемых на шинах и рейках, зависит от схемы расположения захватов и составляет 6-12 м. В случае применения специальных траверс длина блоков может быть увеличена до 15 м в зависимости от конструкции траверсы. Вертикальные воздуховоды монтируют укрупненными блоками в пределах 1-2 этажей здания.

Испытание на герметичность воздуховодов — Duct leakage testing

Тестер утечки канала представляет собой диагностический инструмент , предназначенный для измерения воздухонепроницаемости принудительного воздушного отопления, вентиляции и кондиционирования воздуха (ОВК) воздуховоды. Тестер герметичности воздуховода состоит из откалиброванного вентилятора для измерения расхода воздуха и устройства измерения давления для измерения давления, создаваемого потоком вентилятора. Комбинация измерений давления и расхода вентилятора используется для определения герметичности воздуховода. Герметичность воздуховодов — полезное знание при попытках улучшить энергосбережение .

СОДЕРЖАНИЕ

Использует

Тестеры на герметичность воздуховодов используются в жилых односемейных, жилых многоквартирных и коммерческих зданиях, которые имеют системы принудительной подачи воздуха для отопления и охлаждения.

Операция

Базовая система проверки герметичности воздуховода включает три компонента: откалиброванный вентилятор, систему уплотнения регистра и устройство для измерения потока вентилятора и давления в здании. Приточные регистры или решетки возвратного воздуха герметизируются с помощью клейкой ленты, картона или неклейких многоразовых пломб. Один регистр или возврат остается незапечатанным, и к нему подключается откалиброванный вентилятор. Давление контролируется в одной из ветвей воздуховода, в то время как откалиброванный вентилятор подает воздух в систему. По мере того, как воздух подается в воздуховоды, нарастает давление и вытесняет воздух из всех отверстий в различных соединениях воздуховодов или через швы и стыки печи или кондиционера. Чем плотнее система воздуховодов (например, меньше отверстий), тем меньше воздуха требуется от вентилятора для изменения давления в воздуховоде.

Испытание на герметичность воздуховода может быть выполнено путем создания или сброса давления в воздуховоде. Воздуховоды, которые находятся за пределами ограждающей конструкции здания, например, на чердаке без кондиционирования или в подполье, должны находиться под давлением, чтобы не допустить попадания нежелательных загрязняющих веществ, таких как пыль.

Измерения

Измерения герметичности воздуховодов представлены в различных форматах, включая, помимо прочего:

Воздушный поток (CFM)

CFM25 определяется как воздушный поток (в кубических футах в минуту), необходимый для изменения давления в воздуховоде на 25 Па. CFM25 — это один из основных показателей герметичности воздуховодов. Давление 25 Па соответствует 0,1 дюйма (0,25 см) водяного столба.

Площадь утечки

Оценка площади утечки — полезный способ визуализировать эквивалентный совокупный размер всех утечек или отверстий в воздуховоде. Существует множество стандартных методов расчета, используемых для оценки площади утечки.

Рейтинги

Промышленные и коммерческие воздуховоды часто проходят испытания в соответствии со стандартами, разработанными Национальной ассоциацией подрядчиков по обработке листового металла и кондиционирования воздуха (SMACNA). Воздуховоды временно подвергаются более высокому давлению, а затем получают рейтинг или классификацию, а не оценку утечки.

Дополнительные методы

Утечка наружу

Вышеупомянутая процедура тестирования описывает, как определить общую утечку в воздуховоде или сколько утечек существует для всех воздуховодов, подключенных к системе HVAC. Другой тест — на утечку в воздуховоде наружу. В зависимости от местоположения дома в Соединенных Штатах, некоторые системы HVAC полностью находятся внутри тепловой оболочки , некоторые полностью вне тепловой оболочки, а некоторые представляют собой комбинацию этих двух. Энергосбережение улучшается, главным образом, за счет герметизации воздуховодов, находящихся за пределами тепловой оболочки или подключенных снаружи. В смешанных системах можно определить величину утечки наружу, одновременно создавая давление в доме и создавая давление в воздуховодах, и измеряя количество потока, которое требуется для выравнивания давления.

Вычитание дверцы воздуходувки

Другая форма утечки в воздуховоде наружу — это использование дверцы воздуходувки для измерения общего объема утечки в доме, затем закрытия всех регистров и возвратов и повторного измерения утечки. Следующий шаг требует измерения давления в системе воздуховодов с изоляцией из ленты по отношению к зданию. В руководство к дверце воздуходувки будет включена таблица поправок для определения поправочного коэффициента, основанного на давлении в воздуховоде. Чтобы рассчитать утечку в воздуховоде наружу, вычтите утечку с закрытыми регистрами из общей утечки в здании и умножьте на поправочный коэффициент.

Тест под давлением

Третий метод тестирования для определения утечки наружу из воздуховодов заключается в использовании напорного поддона, который представляет собой крышку регистра с отводом давления для шлангового соединения. Когда в помещении повышено (или сброшено) давление до 50 Па (-50 Па) с помощью дверцы нагнетателя, манометр прикрепляется к напорному поддону с помощью шланга. Если разность давлений близка к нулю, это означает, что воздуховод, связанный с этим конкретным регистром, не подключен к внешней стороне. Давление 5 Па или выше указывает на то, что воздуховод подключен или протекает наружу. Меньший перепад давления указывает на большую утечку. Этот метод не позволяет количественно оценить утечку в воздуховоде, но служит для определения местоположения участков воздуховодов, протекающих наружу. Это скорее качественная мера, используемая для локализации неисправностей.

Класс герметичности воздуховодов для эффективной работы вентиляции

Класс герметичности воздуховодов при монтаже вентиляции имеет решающее значение. Даже соблюдение всех необходимых составляющих не гарантирует работоспособности вентиляционной системы, если не обеспечена герметичность воздуховодов.

монтаж

Для чего нужен контроль герметичности

  • в системах отопления;
  • в системах аспирации воздушных взвесей (принудительный отток);
  • в системах дымоудаления.

Обратите внимание! Воздуховод проектируют под конкретное помещение, с учетом его пространственной конфигурации и практического предназначения.

Герметичность вентиляции определяет КПД воздуховода. Для сравнения часто используют аналогию с дырявым шлангом бытового пылесоса – при таком дефекте аппарат усиленно работает, но мусор остается на месте.

Современные стандарты монтажа воздуховодов, кроме требований по материалу, акцентируют внимание и на герметичности. Официально это закреплено СНиП 3.05.01-85. Кроме технических характеристик, в СНиП 3.05.01-85 обозначены и причины жестких требований к отсутствию протечек воздуха в вентиляционной системе.

Необходимость контроля герметичности воздуховодов обусловлена следующими причинами:

  • Вентиляция, в которой есть протечки, не может обеспечить необходимые показатели санитарных требований к качеству воздуха в бытовом или промышленном помещении. Примером последствий потери герметичности вентиляции служат отравления угарным газом в газифицированных домах старой постройки. Ремонт воздуховода сложнее технически и стоит дороже, чем качественный монтаж и мероприятия по проверке герметичности.
  • Для соблюдения санитарных норм в помещениях с принудительной вентиляцией (современные производственные, административные, офисные и др. строения общего пользования) приходится эксплуатировать систему на максимальных мощностях. Отсюда повышенная энергоемкость, удорожание производственного процесса, преждевременный износ оборудования.
  • В неотапливаемых строениях потеря герметичности воздуховода приводит к образованию внутри коммуникаций конденсата. Это чревато выходом системы вентиляции и строя.

Обратите внимание! Проверку герметичности вентиляционной системы на практике лучше поручать сторонней организации, а не строительной фирме, которая ее монтировала.

Классификация воздуховодов по герметичности

Российская классификация герметичности воздуховодов несколько отличается от европейской.

Европейские стандарты

Европейская классификация герметичности воздуховодов разделяется на 3 класса, каждый из которых отправным условием считает давление воздуха в 400 Па:

  1. Класс «A» – допускает потери, транспортируемого под давлением газа, до 1,35 л/сек/м.
  2. Класс «B» – повышает требования к минимальному показателю потерь, доводя его до значения в 0,45 л/сек/м.
  3. Класс «C» — предусматривает наиболее жесткие требования к системам, которые эксплуатируются под давлением и транспортируют газы повышенной опасности. Здесь минимально разрешенное значение потери воздуха составляет 0,15 л/сек/м.

Российские нормативы

Отечественные строители имеют на данный момент две классификации герметичности воздуховодов:

  • СНиП от 2003 года разделяет их на 2 класса: П (плотный); Н (нормальный).
  • СНиП от 2012 года вводит 4 класса плотности (A, D, C, D), которые соответствуют европейскому стандарту Eurovent 2.2.

классы

Обратите внимание! Вне зависимости от класса герметичности общий подсос (потеря) воздуха в воздуховоде не должен превышать 6%.

Воздуховоды класса «П»

Коэффициент утечки 0,53 л/сек/м при 400 Па.

Плотные воздуховоды предназначены для эксплуатации в помещениях с повышенным загрязнением воздуха, в дымоотводящих, аспирационных и отопительных коммуникациях. В вентиляции такого типа внутреннее давление может доходить до 1, 4 Па.

Изготавливают трубопроводы класса «П» из оцинкованной стали повышенной толщины или из нержавеющей стали (при эксплуатации в химически агрессивной среде).

Особые требования предъявляются к герметизации стыков. Фасонные изделия (переходники, уголки, замки, отводы) составляют примерно 30 % в воздуховодах и каждый стык важно проверить на герметичность.

При монтаже системы вентиляции с повышенными требованиями применяют дополнительную обработку стыков силиконовым герметиком. Операции проводят вручную, что повышает стоимость проекта.

Обратите внимание! Качественный монтаж осуществляется не так, как считает нужным сделать подрядчик, а по специальной инструкции ВСН 279-85, в которой учтены все нюансы.

Данная инструкция описывает факторы, которые влияют на герметичность:

  • качество соединительной, разводящей, запорной арматуры;
  • соосность отдельных участков вентиляции;
  • установки фланцев и герметизирующих прокладок;
  • качество обработки соединяемых элементов;
  • требования к герметику.

вентиляция

После установки вентиляционной системы проводят ее испытание.

Воздуховоды класса «Н»

Коэффициент утечки 1,61 л/сек/м при 400 Па.

Нормальные воздуховоды устанавливают в бытовых и коммерческих помещениях, где нет высокого риска возникновения пожара, взрывоопасности. Коммуникации этого класса являются основными при установке систем вентиляции и дымоудаления в большинстве строящихся зданий общего пользования.

Монтаж вентиляционных систем класса «Н» является не менее ответственным делом, чем монтаж производственных, однако обходится дешевле. В качестве трубного материала используют оцинкованное железо меньшей толщины. Стыки герметизируют резиновыми прокладками. Нет нужды в дополнительной обработке герметиком.

Как проверить герметичность воздуховодов

Проверку установленного воздуховода проводят методом аэродинамических испытаний, в ходе которых фиксируют расходы на оконечных точках – решетках, диффузорах. Как показывает практика, подобные испытания не гарантируют необходимых характеристик даже при полученных «нормальных» показаниях работы.

Такое положение сложилось из-за несогласованности нормативно-правовой документации разных лет и размытости определений. Например, есть требование проверки «отдельных участков воздуховода», но нет требования проверки всей системы целиком.

Заказчику важно позаботиться о выборе квалифицированных специалистов (сторонней для строителей компании), чтобы проверить герметичность и отдельных участков, и всей системы в целом.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: